Step |
Hyp |
Ref |
Expression |
1 |
|
symgbas.1 |
|- G = ( SymGrp ` A ) |
2 |
|
symgbas.2 |
|- B = ( Base ` G ) |
3 |
1 2
|
symgbasf1o |
|- ( F e. B -> F : A -1-1-onto-> A ) |
4 |
|
f1of1 |
|- ( F : A -1-1-onto-> A -> F : A -1-1-> A ) |
5 |
|
eqeq2 |
|- ( Z = ( F ` X ) -> ( ( F ` Y ) = Z <-> ( F ` Y ) = ( F ` X ) ) ) |
6 |
5
|
eqcoms |
|- ( ( F ` X ) = Z -> ( ( F ` Y ) = Z <-> ( F ` Y ) = ( F ` X ) ) ) |
7 |
6
|
adantl |
|- ( ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) /\ ( F ` X ) = Z ) -> ( ( F ` Y ) = Z <-> ( F ` Y ) = ( F ` X ) ) ) |
8 |
|
simp1 |
|- ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) -> F : A -1-1-> A ) |
9 |
|
simp3 |
|- ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) -> Y e. A ) |
10 |
|
simp2 |
|- ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) -> X e. A ) |
11 |
|
f1veqaeq |
|- ( ( F : A -1-1-> A /\ ( Y e. A /\ X e. A ) ) -> ( ( F ` Y ) = ( F ` X ) -> Y = X ) ) |
12 |
8 9 10 11
|
syl12anc |
|- ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) -> ( ( F ` Y ) = ( F ` X ) -> Y = X ) ) |
13 |
12
|
adantr |
|- ( ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) /\ ( F ` X ) = Z ) -> ( ( F ` Y ) = ( F ` X ) -> Y = X ) ) |
14 |
7 13
|
sylbid |
|- ( ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) /\ ( F ` X ) = Z ) -> ( ( F ` Y ) = Z -> Y = X ) ) |
15 |
14
|
necon3d |
|- ( ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) /\ ( F ` X ) = Z ) -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) |
16 |
15
|
3exp1 |
|- ( F : A -1-1-> A -> ( X e. A -> ( Y e. A -> ( ( F ` X ) = Z -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) ) ) ) |
17 |
3 4 16
|
3syl |
|- ( F e. B -> ( X e. A -> ( Y e. A -> ( ( F ` X ) = Z -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) ) ) ) |
18 |
17
|
3imp |
|- ( ( F e. B /\ X e. A /\ Y e. A ) -> ( ( F ` X ) = Z -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) ) |