| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgbas.1 |  |-  G = ( SymGrp ` A ) | 
						
							| 2 |  | symgbas.2 |  |-  B = ( Base ` G ) | 
						
							| 3 | 1 2 | symgbasf1o |  |-  ( F e. B -> F : A -1-1-onto-> A ) | 
						
							| 4 |  | f1of1 |  |-  ( F : A -1-1-onto-> A -> F : A -1-1-> A ) | 
						
							| 5 |  | eqeq2 |  |-  ( Z = ( F ` X ) -> ( ( F ` Y ) = Z <-> ( F ` Y ) = ( F ` X ) ) ) | 
						
							| 6 | 5 | eqcoms |  |-  ( ( F ` X ) = Z -> ( ( F ` Y ) = Z <-> ( F ` Y ) = ( F ` X ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) /\ ( F ` X ) = Z ) -> ( ( F ` Y ) = Z <-> ( F ` Y ) = ( F ` X ) ) ) | 
						
							| 8 |  | simp1 |  |-  ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) -> F : A -1-1-> A ) | 
						
							| 9 |  | simp3 |  |-  ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) -> Y e. A ) | 
						
							| 10 |  | simp2 |  |-  ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) -> X e. A ) | 
						
							| 11 |  | f1veqaeq |  |-  ( ( F : A -1-1-> A /\ ( Y e. A /\ X e. A ) ) -> ( ( F ` Y ) = ( F ` X ) -> Y = X ) ) | 
						
							| 12 | 8 9 10 11 | syl12anc |  |-  ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) -> ( ( F ` Y ) = ( F ` X ) -> Y = X ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) /\ ( F ` X ) = Z ) -> ( ( F ` Y ) = ( F ` X ) -> Y = X ) ) | 
						
							| 14 | 7 13 | sylbid |  |-  ( ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) /\ ( F ` X ) = Z ) -> ( ( F ` Y ) = Z -> Y = X ) ) | 
						
							| 15 | 14 | necon3d |  |-  ( ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) /\ ( F ` X ) = Z ) -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) | 
						
							| 16 | 15 | 3exp1 |  |-  ( F : A -1-1-> A -> ( X e. A -> ( Y e. A -> ( ( F ` X ) = Z -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) ) ) ) | 
						
							| 17 | 3 4 16 | 3syl |  |-  ( F e. B -> ( X e. A -> ( Y e. A -> ( ( F ` X ) = Z -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) ) ) ) | 
						
							| 18 | 17 | 3imp |  |-  ( ( F e. B /\ X e. A /\ Y e. A ) -> ( ( F ` X ) = Z -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) ) |