| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgga.g |  |-  G = ( SymGrp ` X ) | 
						
							| 2 |  | symgga.b |  |-  B = ( Base ` G ) | 
						
							| 3 |  | symgga.f |  |-  F = ( f e. B , x e. X |-> ( f ` x ) ) | 
						
							| 4 | 1 | symggrp |  |-  ( X e. V -> G e. Grp ) | 
						
							| 5 | 2 | idghm |  |-  ( G e. Grp -> ( _I |` B ) e. ( G GrpHom G ) ) | 
						
							| 6 |  | fvresi |  |-  ( f e. B -> ( ( _I |` B ) ` f ) = f ) | 
						
							| 7 | 6 | adantr |  |-  ( ( f e. B /\ x e. X ) -> ( ( _I |` B ) ` f ) = f ) | 
						
							| 8 | 7 | fveq1d |  |-  ( ( f e. B /\ x e. X ) -> ( ( ( _I |` B ) ` f ) ` x ) = ( f ` x ) ) | 
						
							| 9 | 8 | mpoeq3ia |  |-  ( f e. B , x e. X |-> ( ( ( _I |` B ) ` f ) ` x ) ) = ( f e. B , x e. X |-> ( f ` x ) ) | 
						
							| 10 | 3 9 | eqtr4i |  |-  F = ( f e. B , x e. X |-> ( ( ( _I |` B ) ` f ) ` x ) ) | 
						
							| 11 | 2 1 10 | lactghmga |  |-  ( ( _I |` B ) e. ( G GrpHom G ) -> F e. ( G GrpAct X ) ) | 
						
							| 12 | 4 5 11 | 3syl |  |-  ( X e. V -> F e. ( G GrpAct X ) ) |