Step |
Hyp |
Ref |
Expression |
1 |
|
symgga.g |
|- G = ( SymGrp ` X ) |
2 |
|
symgga.b |
|- B = ( Base ` G ) |
3 |
|
symgga.f |
|- F = ( f e. B , x e. X |-> ( f ` x ) ) |
4 |
1
|
symggrp |
|- ( X e. V -> G e. Grp ) |
5 |
2
|
idghm |
|- ( G e. Grp -> ( _I |` B ) e. ( G GrpHom G ) ) |
6 |
|
fvresi |
|- ( f e. B -> ( ( _I |` B ) ` f ) = f ) |
7 |
6
|
adantr |
|- ( ( f e. B /\ x e. X ) -> ( ( _I |` B ) ` f ) = f ) |
8 |
7
|
fveq1d |
|- ( ( f e. B /\ x e. X ) -> ( ( ( _I |` B ) ` f ) ` x ) = ( f ` x ) ) |
9 |
8
|
mpoeq3ia |
|- ( f e. B , x e. X |-> ( ( ( _I |` B ) ` f ) ` x ) ) = ( f e. B , x e. X |-> ( f ` x ) ) |
10 |
3 9
|
eqtr4i |
|- F = ( f e. B , x e. X |-> ( ( ( _I |` B ) ` f ) ` x ) ) |
11 |
2 1 10
|
lactghmga |
|- ( ( _I |` B ) e. ( G GrpHom G ) -> F e. ( G GrpAct X ) ) |
12 |
4 5 11
|
3syl |
|- ( X e. V -> F e. ( G GrpAct X ) ) |