Step |
Hyp |
Ref |
Expression |
1 |
|
symgtrf.t |
|- T = ran ( pmTrsp ` D ) |
2 |
|
symgtrf.g |
|- G = ( SymGrp ` D ) |
3 |
|
symgtrf.b |
|- B = ( Base ` G ) |
4 |
|
symggen.k |
|- K = ( mrCls ` ( SubMnd ` G ) ) |
5 |
1 2 3 4
|
symggen |
|- ( D e. Fin -> ( K ` T ) = { x e. B | dom ( x \ _I ) e. Fin } ) |
6 |
|
difss |
|- ( x \ _I ) C_ x |
7 |
|
dmss |
|- ( ( x \ _I ) C_ x -> dom ( x \ _I ) C_ dom x ) |
8 |
6 7
|
ax-mp |
|- dom ( x \ _I ) C_ dom x |
9 |
2 3
|
symgbasf1o |
|- ( x e. B -> x : D -1-1-onto-> D ) |
10 |
|
f1odm |
|- ( x : D -1-1-onto-> D -> dom x = D ) |
11 |
9 10
|
syl |
|- ( x e. B -> dom x = D ) |
12 |
8 11
|
sseqtrid |
|- ( x e. B -> dom ( x \ _I ) C_ D ) |
13 |
|
ssfi |
|- ( ( D e. Fin /\ dom ( x \ _I ) C_ D ) -> dom ( x \ _I ) e. Fin ) |
14 |
12 13
|
sylan2 |
|- ( ( D e. Fin /\ x e. B ) -> dom ( x \ _I ) e. Fin ) |
15 |
14
|
ralrimiva |
|- ( D e. Fin -> A. x e. B dom ( x \ _I ) e. Fin ) |
16 |
|
rabid2 |
|- ( B = { x e. B | dom ( x \ _I ) e. Fin } <-> A. x e. B dom ( x \ _I ) e. Fin ) |
17 |
15 16
|
sylibr |
|- ( D e. Fin -> B = { x e. B | dom ( x \ _I ) e. Fin } ) |
18 |
5 17
|
eqtr4d |
|- ( D e. Fin -> ( K ` T ) = B ) |