Metamath Proof Explorer


Theorem symggen2

Description: A finite permutation group is generated by the transpositions, see also Theorem 3.4 in Rotman p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses symgtrf.t
|- T = ran ( pmTrsp ` D )
symgtrf.g
|- G = ( SymGrp ` D )
symgtrf.b
|- B = ( Base ` G )
symggen.k
|- K = ( mrCls ` ( SubMnd ` G ) )
Assertion symggen2
|- ( D e. Fin -> ( K ` T ) = B )

Proof

Step Hyp Ref Expression
1 symgtrf.t
 |-  T = ran ( pmTrsp ` D )
2 symgtrf.g
 |-  G = ( SymGrp ` D )
3 symgtrf.b
 |-  B = ( Base ` G )
4 symggen.k
 |-  K = ( mrCls ` ( SubMnd ` G ) )
5 1 2 3 4 symggen
 |-  ( D e. Fin -> ( K ` T ) = { x e. B | dom ( x \ _I ) e. Fin } )
6 difss
 |-  ( x \ _I ) C_ x
7 dmss
 |-  ( ( x \ _I ) C_ x -> dom ( x \ _I ) C_ dom x )
8 6 7 ax-mp
 |-  dom ( x \ _I ) C_ dom x
9 2 3 symgbasf1o
 |-  ( x e. B -> x : D -1-1-onto-> D )
10 f1odm
 |-  ( x : D -1-1-onto-> D -> dom x = D )
11 9 10 syl
 |-  ( x e. B -> dom x = D )
12 8 11 sseqtrid
 |-  ( x e. B -> dom ( x \ _I ) C_ D )
13 ssfi
 |-  ( ( D e. Fin /\ dom ( x \ _I ) C_ D ) -> dom ( x \ _I ) e. Fin )
14 12 13 sylan2
 |-  ( ( D e. Fin /\ x e. B ) -> dom ( x \ _I ) e. Fin )
15 14 ralrimiva
 |-  ( D e. Fin -> A. x e. B dom ( x \ _I ) e. Fin )
16 rabid2
 |-  ( B = { x e. B | dom ( x \ _I ) e. Fin } <-> A. x e. B dom ( x \ _I ) e. Fin )
17 15 16 sylibr
 |-  ( D e. Fin -> B = { x e. B | dom ( x \ _I ) e. Fin } )
18 5 17 eqtr4d
 |-  ( D e. Fin -> ( K ` T ) = B )