Step |
Hyp |
Ref |
Expression |
1 |
|
symggrp.1 |
|- G = ( SymGrp ` A ) |
2 |
|
eqidd |
|- ( A e. V -> ( Base ` G ) = ( Base ` G ) ) |
3 |
|
eqidd |
|- ( A e. V -> ( +g ` G ) = ( +g ` G ) ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
6 |
1 4 5
|
symgcl |
|- ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) |
7 |
6
|
3adant1 |
|- ( ( A e. V /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) |
8 |
1 4 5
|
symgcl |
|- ( ( f e. ( Base ` G ) /\ g e. ( Base ` G ) ) -> ( f ( +g ` G ) g ) e. ( Base ` G ) ) |
9 |
1 4 5
|
symgov |
|- ( ( f e. ( Base ` G ) /\ g e. ( Base ` G ) ) -> ( f ( +g ` G ) g ) = ( f o. g ) ) |
10 |
8 9
|
symggrplem |
|- ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) -> ( ( x ( +g ` G ) y ) ( +g ` G ) z ) = ( x ( +g ` G ) ( y ( +g ` G ) z ) ) ) |
11 |
10
|
adantl |
|- ( ( A e. V /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( ( x ( +g ` G ) y ) ( +g ` G ) z ) = ( x ( +g ` G ) ( y ( +g ` G ) z ) ) ) |
12 |
1
|
idresperm |
|- ( A e. V -> ( _I |` A ) e. ( Base ` G ) ) |
13 |
1 4 5
|
symgov |
|- ( ( ( _I |` A ) e. ( Base ` G ) /\ x e. ( Base ` G ) ) -> ( ( _I |` A ) ( +g ` G ) x ) = ( ( _I |` A ) o. x ) ) |
14 |
12 13
|
sylan |
|- ( ( A e. V /\ x e. ( Base ` G ) ) -> ( ( _I |` A ) ( +g ` G ) x ) = ( ( _I |` A ) o. x ) ) |
15 |
1 4
|
elsymgbas |
|- ( A e. V -> ( x e. ( Base ` G ) <-> x : A -1-1-onto-> A ) ) |
16 |
15
|
biimpa |
|- ( ( A e. V /\ x e. ( Base ` G ) ) -> x : A -1-1-onto-> A ) |
17 |
|
f1of |
|- ( x : A -1-1-onto-> A -> x : A --> A ) |
18 |
|
fcoi2 |
|- ( x : A --> A -> ( ( _I |` A ) o. x ) = x ) |
19 |
16 17 18
|
3syl |
|- ( ( A e. V /\ x e. ( Base ` G ) ) -> ( ( _I |` A ) o. x ) = x ) |
20 |
14 19
|
eqtrd |
|- ( ( A e. V /\ x e. ( Base ` G ) ) -> ( ( _I |` A ) ( +g ` G ) x ) = x ) |
21 |
|
f1ocnv |
|- ( x : A -1-1-onto-> A -> `' x : A -1-1-onto-> A ) |
22 |
21
|
a1i |
|- ( A e. V -> ( x : A -1-1-onto-> A -> `' x : A -1-1-onto-> A ) ) |
23 |
1 4
|
elsymgbas |
|- ( A e. V -> ( `' x e. ( Base ` G ) <-> `' x : A -1-1-onto-> A ) ) |
24 |
22 15 23
|
3imtr4d |
|- ( A e. V -> ( x e. ( Base ` G ) -> `' x e. ( Base ` G ) ) ) |
25 |
24
|
imp |
|- ( ( A e. V /\ x e. ( Base ` G ) ) -> `' x e. ( Base ` G ) ) |
26 |
1 4 5
|
symgov |
|- ( ( `' x e. ( Base ` G ) /\ x e. ( Base ` G ) ) -> ( `' x ( +g ` G ) x ) = ( `' x o. x ) ) |
27 |
25 26
|
sylancom |
|- ( ( A e. V /\ x e. ( Base ` G ) ) -> ( `' x ( +g ` G ) x ) = ( `' x o. x ) ) |
28 |
|
f1ococnv1 |
|- ( x : A -1-1-onto-> A -> ( `' x o. x ) = ( _I |` A ) ) |
29 |
16 28
|
syl |
|- ( ( A e. V /\ x e. ( Base ` G ) ) -> ( `' x o. x ) = ( _I |` A ) ) |
30 |
27 29
|
eqtrd |
|- ( ( A e. V /\ x e. ( Base ` G ) ) -> ( `' x ( +g ` G ) x ) = ( _I |` A ) ) |
31 |
2 3 7 11 12 20 25 30
|
isgrpd |
|- ( A e. V -> G e. Grp ) |