Description: The symmetric group on n objects has cardinality n ! . (Contributed by Mario Carneiro, 22-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgbas.1 | |- G = ( SymGrp ` A ) |
|
symgbas.2 | |- B = ( Base ` G ) |
||
Assertion | symghash | |- ( A e. Fin -> ( # ` B ) = ( ! ` ( # ` A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgbas.1 | |- G = ( SymGrp ` A ) |
|
2 | symgbas.2 | |- B = ( Base ` G ) |
|
3 | 1 2 | symgbas | |- B = { f | f : A -1-1-onto-> A } |
4 | 3 | fveq2i | |- ( # ` B ) = ( # ` { f | f : A -1-1-onto-> A } ) |
5 | hashfac | |- ( A e. Fin -> ( # ` { f | f : A -1-1-onto-> A } ) = ( ! ` ( # ` A ) ) ) |
|
6 | 4 5 | eqtrid | |- ( A e. Fin -> ( # ` B ) = ( ! ` ( # ` A ) ) ) |