Description: The symmetric group on n objects has cardinality n ! . (Contributed by Mario Carneiro, 22-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| symgbas.2 | |- B = ( Base ` G ) |
||
| Assertion | symghash | |- ( A e. Fin -> ( # ` B ) = ( ! ` ( # ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symgbas.2 | |- B = ( Base ` G ) |
|
| 3 | 1 2 | symgbas | |- B = { f | f : A -1-1-onto-> A } |
| 4 | 3 | fveq2i | |- ( # ` B ) = ( # ` { f | f : A -1-1-onto-> A } ) |
| 5 | hashfac | |- ( A e. Fin -> ( # ` { f | f : A -1-1-onto-> A } ) = ( ! ` ( # ` A ) ) ) |
|
| 6 | 4 5 | eqtrid | |- ( A e. Fin -> ( # ` B ) = ( ! ` ( # ` A ) ) ) |