Metamath Proof Explorer


Theorem symghash

Description: The symmetric group on n objects has cardinality n ! . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses symgbas.1
|- G = ( SymGrp ` A )
symgbas.2
|- B = ( Base ` G )
Assertion symghash
|- ( A e. Fin -> ( # ` B ) = ( ! ` ( # ` A ) ) )

Proof

Step Hyp Ref Expression
1 symgbas.1
 |-  G = ( SymGrp ` A )
2 symgbas.2
 |-  B = ( Base ` G )
3 1 2 symgbas
 |-  B = { f | f : A -1-1-onto-> A }
4 3 fveq2i
 |-  ( # ` B ) = ( # ` { f | f : A -1-1-onto-> A } )
5 hashfac
 |-  ( A e. Fin -> ( # ` { f | f : A -1-1-onto-> A } ) = ( ! ` ( # ` A ) ) )
6 4 5 eqtrid
 |-  ( A e. Fin -> ( # ` B ) = ( ! ` ( # ` A ) ) )