| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symggrp.1 |
|- G = ( SymGrp ` A ) |
| 2 |
|
eqid |
|- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) |
| 3 |
2
|
efmndid |
|- ( A e. V -> ( _I |` A ) = ( 0g ` ( EndoFMnd ` A ) ) ) |
| 4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 5 |
2 1 4
|
symgsubmefmnd |
|- ( A e. V -> ( Base ` G ) e. ( SubMnd ` ( EndoFMnd ` A ) ) ) |
| 6 |
1 4 2
|
symgressbas |
|- G = ( ( EndoFMnd ` A ) |`s ( Base ` G ) ) |
| 7 |
|
eqid |
|- ( 0g ` ( EndoFMnd ` A ) ) = ( 0g ` ( EndoFMnd ` A ) ) |
| 8 |
6 7
|
subm0 |
|- ( ( Base ` G ) e. ( SubMnd ` ( EndoFMnd ` A ) ) -> ( 0g ` ( EndoFMnd ` A ) ) = ( 0g ` G ) ) |
| 9 |
5 8
|
syl |
|- ( A e. V -> ( 0g ` ( EndoFMnd ` A ) ) = ( 0g ` G ) ) |
| 10 |
3 9
|
eqtrd |
|- ( A e. V -> ( _I |` A ) = ( 0g ` G ) ) |