Metamath Proof Explorer


Theorem symginv

Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses symggrp.1
|- G = ( SymGrp ` A )
symginv.2
|- B = ( Base ` G )
symginv.3
|- N = ( invg ` G )
Assertion symginv
|- ( F e. B -> ( N ` F ) = `' F )

Proof

Step Hyp Ref Expression
1 symggrp.1
 |-  G = ( SymGrp ` A )
2 symginv.2
 |-  B = ( Base ` G )
3 symginv.3
 |-  N = ( invg ` G )
4 1 2 elsymgbas2
 |-  ( F e. B -> ( F e. B <-> F : A -1-1-onto-> A ) )
5 4 ibi
 |-  ( F e. B -> F : A -1-1-onto-> A )
6 f1ocnv
 |-  ( F : A -1-1-onto-> A -> `' F : A -1-1-onto-> A )
7 5 6 syl
 |-  ( F e. B -> `' F : A -1-1-onto-> A )
8 cnvexg
 |-  ( F e. B -> `' F e. _V )
9 1 2 elsymgbas2
 |-  ( `' F e. _V -> ( `' F e. B <-> `' F : A -1-1-onto-> A ) )
10 8 9 syl
 |-  ( F e. B -> ( `' F e. B <-> `' F : A -1-1-onto-> A ) )
11 7 10 mpbird
 |-  ( F e. B -> `' F e. B )
12 eqid
 |-  ( +g ` G ) = ( +g ` G )
13 1 2 12 symgov
 |-  ( ( F e. B /\ `' F e. B ) -> ( F ( +g ` G ) `' F ) = ( F o. `' F ) )
14 11 13 mpdan
 |-  ( F e. B -> ( F ( +g ` G ) `' F ) = ( F o. `' F ) )
15 f1ococnv2
 |-  ( F : A -1-1-onto-> A -> ( F o. `' F ) = ( _I |` A ) )
16 5 15 syl
 |-  ( F e. B -> ( F o. `' F ) = ( _I |` A ) )
17 1 2 elbasfv
 |-  ( F e. B -> A e. _V )
18 1 symgid
 |-  ( A e. _V -> ( _I |` A ) = ( 0g ` G ) )
19 17 18 syl
 |-  ( F e. B -> ( _I |` A ) = ( 0g ` G ) )
20 14 16 19 3eqtrd
 |-  ( F e. B -> ( F ( +g ` G ) `' F ) = ( 0g ` G ) )
21 1 symggrp
 |-  ( A e. _V -> G e. Grp )
22 17 21 syl
 |-  ( F e. B -> G e. Grp )
23 id
 |-  ( F e. B -> F e. B )
24 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
25 2 12 24 3 grpinvid1
 |-  ( ( G e. Grp /\ F e. B /\ `' F e. B ) -> ( ( N ` F ) = `' F <-> ( F ( +g ` G ) `' F ) = ( 0g ` G ) ) )
26 22 23 11 25 syl3anc
 |-  ( F e. B -> ( ( N ` F ) = `' F <-> ( F ( +g ` G ) `' F ) = ( 0g ` G ) ) )
27 20 26 mpbird
 |-  ( F e. B -> ( N ` F ) = `' F )