Step |
Hyp |
Ref |
Expression |
1 |
|
symggrp.1 |
|- G = ( SymGrp ` A ) |
2 |
|
symginv.2 |
|- B = ( Base ` G ) |
3 |
|
symginv.3 |
|- N = ( invg ` G ) |
4 |
1 2
|
elsymgbas2 |
|- ( F e. B -> ( F e. B <-> F : A -1-1-onto-> A ) ) |
5 |
4
|
ibi |
|- ( F e. B -> F : A -1-1-onto-> A ) |
6 |
|
f1ocnv |
|- ( F : A -1-1-onto-> A -> `' F : A -1-1-onto-> A ) |
7 |
5 6
|
syl |
|- ( F e. B -> `' F : A -1-1-onto-> A ) |
8 |
|
cnvexg |
|- ( F e. B -> `' F e. _V ) |
9 |
1 2
|
elsymgbas2 |
|- ( `' F e. _V -> ( `' F e. B <-> `' F : A -1-1-onto-> A ) ) |
10 |
8 9
|
syl |
|- ( F e. B -> ( `' F e. B <-> `' F : A -1-1-onto-> A ) ) |
11 |
7 10
|
mpbird |
|- ( F e. B -> `' F e. B ) |
12 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
13 |
1 2 12
|
symgov |
|- ( ( F e. B /\ `' F e. B ) -> ( F ( +g ` G ) `' F ) = ( F o. `' F ) ) |
14 |
11 13
|
mpdan |
|- ( F e. B -> ( F ( +g ` G ) `' F ) = ( F o. `' F ) ) |
15 |
|
f1ococnv2 |
|- ( F : A -1-1-onto-> A -> ( F o. `' F ) = ( _I |` A ) ) |
16 |
5 15
|
syl |
|- ( F e. B -> ( F o. `' F ) = ( _I |` A ) ) |
17 |
1 2
|
elbasfv |
|- ( F e. B -> A e. _V ) |
18 |
1
|
symgid |
|- ( A e. _V -> ( _I |` A ) = ( 0g ` G ) ) |
19 |
17 18
|
syl |
|- ( F e. B -> ( _I |` A ) = ( 0g ` G ) ) |
20 |
14 16 19
|
3eqtrd |
|- ( F e. B -> ( F ( +g ` G ) `' F ) = ( 0g ` G ) ) |
21 |
1
|
symggrp |
|- ( A e. _V -> G e. Grp ) |
22 |
17 21
|
syl |
|- ( F e. B -> G e. Grp ) |
23 |
|
id |
|- ( F e. B -> F e. B ) |
24 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
25 |
2 12 24 3
|
grpinvid1 |
|- ( ( G e. Grp /\ F e. B /\ `' F e. B ) -> ( ( N ` F ) = `' F <-> ( F ( +g ` G ) `' F ) = ( 0g ` G ) ) ) |
26 |
22 23 11 25
|
syl3anc |
|- ( F e. B -> ( ( N ` F ) = `' F <-> ( F ( +g ` G ) `' F ) = ( 0g ` G ) ) ) |
27 |
20 26
|
mpbird |
|- ( F e. B -> ( N ` F ) = `' F ) |