Step |
Hyp |
Ref |
Expression |
1 |
|
symgmatr01.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
2 |
|
symgmatr01.0 |
|- .0. = ( 0g ` R ) |
3 |
|
symgmatr01.1 |
|- .1. = ( 1r ` R ) |
4 |
1
|
symgmatr01lem |
|- ( ( K e. N /\ L e. N ) -> ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) -> E. k e. N if ( k = K , if ( ( Q ` k ) = L , .1. , .0. ) , ( k M ( Q ` k ) ) ) = .0. ) ) |
5 |
4
|
imp |
|- ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> E. k e. N if ( k = K , if ( ( Q ` k ) = L , .1. , .0. ) , ( k M ( Q ` k ) ) ) = .0. ) |
6 |
|
eqidd |
|- ( ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) /\ k e. N ) -> ( i e. N , j e. N |-> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) ) = ( i e. N , j e. N |-> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) ) ) |
7 |
|
eqeq1 |
|- ( i = k -> ( i = K <-> k = K ) ) |
8 |
7
|
adantr |
|- ( ( i = k /\ j = ( Q ` k ) ) -> ( i = K <-> k = K ) ) |
9 |
|
eqeq1 |
|- ( j = ( Q ` k ) -> ( j = L <-> ( Q ` k ) = L ) ) |
10 |
9
|
adantl |
|- ( ( i = k /\ j = ( Q ` k ) ) -> ( j = L <-> ( Q ` k ) = L ) ) |
11 |
10
|
ifbid |
|- ( ( i = k /\ j = ( Q ` k ) ) -> if ( j = L , .1. , .0. ) = if ( ( Q ` k ) = L , .1. , .0. ) ) |
12 |
|
oveq12 |
|- ( ( i = k /\ j = ( Q ` k ) ) -> ( i M j ) = ( k M ( Q ` k ) ) ) |
13 |
8 11 12
|
ifbieq12d |
|- ( ( i = k /\ j = ( Q ` k ) ) -> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) = if ( k = K , if ( ( Q ` k ) = L , .1. , .0. ) , ( k M ( Q ` k ) ) ) ) |
14 |
13
|
adantl |
|- ( ( ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) /\ k e. N ) /\ ( i = k /\ j = ( Q ` k ) ) ) -> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) = if ( k = K , if ( ( Q ` k ) = L , .1. , .0. ) , ( k M ( Q ` k ) ) ) ) |
15 |
|
simpr |
|- ( ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) /\ k e. N ) -> k e. N ) |
16 |
|
eldifi |
|- ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) -> Q e. P ) |
17 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
18 |
17 1
|
symgfv |
|- ( ( Q e. P /\ k e. N ) -> ( Q ` k ) e. N ) |
19 |
18
|
ex |
|- ( Q e. P -> ( k e. N -> ( Q ` k ) e. N ) ) |
20 |
16 19
|
syl |
|- ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) -> ( k e. N -> ( Q ` k ) e. N ) ) |
21 |
20
|
adantl |
|- ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> ( k e. N -> ( Q ` k ) e. N ) ) |
22 |
21
|
imp |
|- ( ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) /\ k e. N ) -> ( Q ` k ) e. N ) |
23 |
3
|
fvexi |
|- .1. e. _V |
24 |
2
|
fvexi |
|- .0. e. _V |
25 |
23 24
|
ifex |
|- if ( ( Q ` k ) = L , .1. , .0. ) e. _V |
26 |
|
ovex |
|- ( k M ( Q ` k ) ) e. _V |
27 |
25 26
|
ifex |
|- if ( k = K , if ( ( Q ` k ) = L , .1. , .0. ) , ( k M ( Q ` k ) ) ) e. _V |
28 |
27
|
a1i |
|- ( ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) /\ k e. N ) -> if ( k = K , if ( ( Q ` k ) = L , .1. , .0. ) , ( k M ( Q ` k ) ) ) e. _V ) |
29 |
6 14 15 22 28
|
ovmpod |
|- ( ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) /\ k e. N ) -> ( k ( i e. N , j e. N |-> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) ) ( Q ` k ) ) = if ( k = K , if ( ( Q ` k ) = L , .1. , .0. ) , ( k M ( Q ` k ) ) ) ) |
30 |
29
|
eqeq1d |
|- ( ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) /\ k e. N ) -> ( ( k ( i e. N , j e. N |-> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) ) ( Q ` k ) ) = .0. <-> if ( k = K , if ( ( Q ` k ) = L , .1. , .0. ) , ( k M ( Q ` k ) ) ) = .0. ) ) |
31 |
30
|
rexbidva |
|- ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> ( E. k e. N ( k ( i e. N , j e. N |-> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) ) ( Q ` k ) ) = .0. <-> E. k e. N if ( k = K , if ( ( Q ` k ) = L , .1. , .0. ) , ( k M ( Q ` k ) ) ) = .0. ) ) |
32 |
5 31
|
mpbird |
|- ( ( ( K e. N /\ L e. N ) /\ Q e. ( P \ { q e. P | ( q ` K ) = L } ) ) -> E. k e. N ( k ( i e. N , j e. N |-> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) ) ( Q ` k ) ) = .0. ) |
33 |
32
|
ex |
|- ( ( K e. N /\ L e. N ) -> ( Q e. ( P \ { q e. P | ( q ` K ) = L } ) -> E. k e. N ( k ( i e. N , j e. N |-> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) ) ( Q ` k ) ) = .0. ) ) |