Description: For a permutation of a set, each element of the set is replaced by an(other) element of the set. (Contributed by AV, 2-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | symgmov1.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
Assertion | symgmov2 | |- ( Q e. P -> A. n e. N E. k e. N ( Q ` k ) = n ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgmov1.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
2 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
3 | 2 1 | symgbasf1o | |- ( Q e. P -> Q : N -1-1-onto-> N ) |
4 | f1ofo | |- ( Q : N -1-1-onto-> N -> Q : N -onto-> N ) |
|
5 | foelrni | |- ( ( Q : N -onto-> N /\ n e. N ) -> E. k e. N ( Q ` k ) = n ) |
|
6 | 5 | ralrimiva | |- ( Q : N -onto-> N -> A. n e. N E. k e. N ( Q ` k ) = n ) |
7 | 3 4 6 | 3syl | |- ( Q e. P -> A. n e. N E. k e. N ( Q ` k ) = n ) |