| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgpssefmnd.m |  |-  M = ( EndoFMnd ` A ) | 
						
							| 2 |  | symgpssefmnd.g |  |-  G = ( SymGrp ` A ) | 
						
							| 3 |  | hashgt12el |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> E. x e. A E. y e. A x =/= y ) | 
						
							| 4 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 5 | 2 4 | symgbasmap |  |-  ( x e. ( Base ` G ) -> x e. ( A ^m A ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 7 | 1 6 | efmndbas |  |-  ( Base ` M ) = ( A ^m A ) | 
						
							| 8 | 5 7 | eleqtrrdi |  |-  ( x e. ( Base ` G ) -> x e. ( Base ` M ) ) | 
						
							| 9 | 8 | ssriv |  |-  ( Base ` G ) C_ ( Base ` M ) | 
						
							| 10 | 9 | a1i |  |-  ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( Base ` G ) C_ ( Base ` M ) ) | 
						
							| 11 |  | fconst6g |  |-  ( x e. A -> ( A X. { x } ) : A --> A ) | 
						
							| 12 | 11 | adantr |  |-  ( ( x e. A /\ y e. A ) -> ( A X. { x } ) : A --> A ) | 
						
							| 13 | 12 | 3ad2ant2 |  |-  ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( A X. { x } ) : A --> A ) | 
						
							| 14 | 1 6 | elefmndbas |  |-  ( A e. V -> ( ( A X. { x } ) e. ( Base ` M ) <-> ( A X. { x } ) : A --> A ) ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( ( A X. { x } ) e. ( Base ` M ) <-> ( A X. { x } ) : A --> A ) ) | 
						
							| 16 | 13 15 | mpbird |  |-  ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( A X. { x } ) e. ( Base ` M ) ) | 
						
							| 17 |  | fconstg |  |-  ( x e. A -> ( A X. { x } ) : A --> { x } ) | 
						
							| 18 | 17 | adantr |  |-  ( ( x e. A /\ y e. A ) -> ( A X. { x } ) : A --> { x } ) | 
						
							| 19 | 18 | 3ad2ant2 |  |-  ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( A X. { x } ) : A --> { x } ) | 
						
							| 20 |  | id |  |-  ( ( x e. A /\ y e. A /\ x =/= y ) -> ( x e. A /\ y e. A /\ x =/= y ) ) | 
						
							| 21 | 20 | 3expa |  |-  ( ( ( x e. A /\ y e. A ) /\ x =/= y ) -> ( x e. A /\ y e. A /\ x =/= y ) ) | 
						
							| 22 | 21 | 3adant1 |  |-  ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( x e. A /\ y e. A /\ x =/= y ) ) | 
						
							| 23 |  | nf1oconst |  |-  ( ( ( A X. { x } ) : A --> { x } /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> -. ( A X. { x } ) : A -1-1-onto-> A ) | 
						
							| 24 | 19 22 23 | syl2anc |  |-  ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> -. ( A X. { x } ) : A -1-1-onto-> A ) | 
						
							| 25 | 2 4 | elsymgbas |  |-  ( A e. V -> ( ( A X. { x } ) e. ( Base ` G ) <-> ( A X. { x } ) : A -1-1-onto-> A ) ) | 
						
							| 26 | 25 | notbid |  |-  ( A e. V -> ( -. ( A X. { x } ) e. ( Base ` G ) <-> -. ( A X. { x } ) : A -1-1-onto-> A ) ) | 
						
							| 27 | 26 | 3ad2ant1 |  |-  ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( -. ( A X. { x } ) e. ( Base ` G ) <-> -. ( A X. { x } ) : A -1-1-onto-> A ) ) | 
						
							| 28 | 24 27 | mpbird |  |-  ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> -. ( A X. { x } ) e. ( Base ` G ) ) | 
						
							| 29 | 10 16 28 | ssnelpssd |  |-  ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( Base ` G ) C. ( Base ` M ) ) | 
						
							| 30 | 29 | 3exp |  |-  ( A e. V -> ( ( x e. A /\ y e. A ) -> ( x =/= y -> ( Base ` G ) C. ( Base ` M ) ) ) ) | 
						
							| 31 | 30 | rexlimdvv |  |-  ( A e. V -> ( E. x e. A E. y e. A x =/= y -> ( Base ` G ) C. ( Base ` M ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( E. x e. A E. y e. A x =/= y -> ( Base ` G ) C. ( Base ` M ) ) ) | 
						
							| 33 | 3 32 | mpd |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( Base ` G ) C. ( Base ` M ) ) |