Description: Transpositions are elements of the symmetric group. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgtrf.t | |- T = ran ( pmTrsp ` D ) |
|
| symgtrf.g | |- G = ( SymGrp ` D ) |
||
| symgtrf.b | |- B = ( Base ` G ) |
||
| Assertion | symgtrf | |- T C_ B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgtrf.t | |- T = ran ( pmTrsp ` D ) |
|
| 2 | symgtrf.g | |- G = ( SymGrp ` D ) |
|
| 3 | symgtrf.b | |- B = ( Base ` G ) |
|
| 4 | eqid | |- ( pmTrsp ` D ) = ( pmTrsp ` D ) |
|
| 5 | 4 1 | pmtrff1o | |- ( x e. T -> x : D -1-1-onto-> D ) |
| 6 | 2 3 | elsymgbas2 | |- ( x e. T -> ( x e. B <-> x : D -1-1-onto-> D ) ) |
| 7 | 5 6 | mpbird | |- ( x e. T -> x e. B ) |
| 8 | 7 | ssriv | |- T C_ B |