| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgvalstructOLD.g |  |-  G = ( SymGrp ` A ) | 
						
							| 2 |  | symgvalstructOLD.b |  |-  B = { x | x : A -1-1-onto-> A } | 
						
							| 3 |  | symgvalstructOLD.m |  |-  M = ( A ^m A ) | 
						
							| 4 |  | symgvalstructOLD.p |  |-  .+ = ( f e. M , g e. M |-> ( f o. g ) ) | 
						
							| 5 |  | symgvalstructOLD.j |  |-  J = ( Xt_ ` ( A X. { ~P A } ) ) | 
						
							| 6 |  | hashv01gt1 |  |-  ( A e. V -> ( ( # ` A ) = 0 \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) ) | 
						
							| 7 |  | hasheq0 |  |-  ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) ) | 
						
							| 8 |  | 0symgefmndeq |  |-  ( EndoFMnd ` (/) ) = ( SymGrp ` (/) ) | 
						
							| 9 | 8 | eqcomi |  |-  ( SymGrp ` (/) ) = ( EndoFMnd ` (/) ) | 
						
							| 10 |  | fveq2 |  |-  ( A = (/) -> ( SymGrp ` A ) = ( SymGrp ` (/) ) ) | 
						
							| 11 | 1 10 | eqtrid |  |-  ( A = (/) -> G = ( SymGrp ` (/) ) ) | 
						
							| 12 |  | fveq2 |  |-  ( A = (/) -> ( EndoFMnd ` A ) = ( EndoFMnd ` (/) ) ) | 
						
							| 13 | 9 11 12 | 3eqtr4a |  |-  ( A = (/) -> G = ( EndoFMnd ` A ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( A e. V /\ A = (/) ) -> G = ( EndoFMnd ` A ) ) | 
						
							| 15 |  | eqid |  |-  ( EndoFMnd ` A ) = ( EndoFMnd ` A ) | 
						
							| 16 | 15 3 4 5 | efmnd |  |-  ( A e. V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 17 | 16 | adantr |  |-  ( ( A e. V /\ A = (/) ) -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 18 |  | 0map0sn0 |  |-  ( (/) ^m (/) ) = { (/) } | 
						
							| 19 |  | id |  |-  ( A = (/) -> A = (/) ) | 
						
							| 20 | 19 19 | oveq12d |  |-  ( A = (/) -> ( A ^m A ) = ( (/) ^m (/) ) ) | 
						
							| 21 | 11 | fveq2d |  |-  ( A = (/) -> ( Base ` G ) = ( Base ` ( SymGrp ` (/) ) ) ) | 
						
							| 22 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 23 | 1 22 | symgbas |  |-  ( Base ` G ) = { x | x : A -1-1-onto-> A } | 
						
							| 24 |  | symgbas0 |  |-  ( Base ` ( SymGrp ` (/) ) ) = { (/) } | 
						
							| 25 | 21 23 24 | 3eqtr3g |  |-  ( A = (/) -> { x | x : A -1-1-onto-> A } = { (/) } ) | 
						
							| 26 | 2 25 | eqtrid |  |-  ( A = (/) -> B = { (/) } ) | 
						
							| 27 | 18 20 26 | 3eqtr4a |  |-  ( A = (/) -> ( A ^m A ) = B ) | 
						
							| 28 | 27 | adantl |  |-  ( ( A e. V /\ A = (/) ) -> ( A ^m A ) = B ) | 
						
							| 29 | 3 28 | eqtrid |  |-  ( ( A e. V /\ A = (/) ) -> M = B ) | 
						
							| 30 | 29 | opeq2d |  |-  ( ( A e. V /\ A = (/) ) -> <. ( Base ` ndx ) , M >. = <. ( Base ` ndx ) , B >. ) | 
						
							| 31 | 30 | tpeq1d |  |-  ( ( A e. V /\ A = (/) ) -> { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 32 | 14 17 31 | 3eqtrd |  |-  ( ( A e. V /\ A = (/) ) -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 33 | 32 | ex |  |-  ( A e. V -> ( A = (/) -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) ) | 
						
							| 34 | 7 33 | sylbid |  |-  ( A e. V -> ( ( # ` A ) = 0 -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) ) | 
						
							| 35 |  | hash1snb |  |-  ( A e. V -> ( ( # ` A ) = 1 <-> E. x A = { x } ) ) | 
						
							| 36 |  | snex |  |-  { x } e. _V | 
						
							| 37 |  | eleq1 |  |-  ( A = { x } -> ( A e. _V <-> { x } e. _V ) ) | 
						
							| 38 | 36 37 | mpbiri |  |-  ( A = { x } -> A e. _V ) | 
						
							| 39 | 15 3 4 5 | efmnd |  |-  ( A e. _V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 40 | 38 39 | syl |  |-  ( A = { x } -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 41 |  | snsymgefmndeq |  |-  ( A = { x } -> ( EndoFMnd ` A ) = ( SymGrp ` A ) ) | 
						
							| 42 | 41 1 | eqtr4di |  |-  ( A = { x } -> ( EndoFMnd ` A ) = G ) | 
						
							| 43 | 42 | fveq2d |  |-  ( A = { x } -> ( Base ` ( EndoFMnd ` A ) ) = ( Base ` G ) ) | 
						
							| 44 |  | eqid |  |-  ( Base ` ( EndoFMnd ` A ) ) = ( Base ` ( EndoFMnd ` A ) ) | 
						
							| 45 | 15 44 | efmndbas |  |-  ( Base ` ( EndoFMnd ` A ) ) = ( A ^m A ) | 
						
							| 46 | 45 3 | eqtr4i |  |-  ( Base ` ( EndoFMnd ` A ) ) = M | 
						
							| 47 | 23 2 | eqtr4i |  |-  ( Base ` G ) = B | 
						
							| 48 | 43 46 47 | 3eqtr3g |  |-  ( A = { x } -> M = B ) | 
						
							| 49 | 48 | opeq2d |  |-  ( A = { x } -> <. ( Base ` ndx ) , M >. = <. ( Base ` ndx ) , B >. ) | 
						
							| 50 | 49 | tpeq1d |  |-  ( A = { x } -> { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 51 | 40 42 50 | 3eqtr3d |  |-  ( A = { x } -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 52 | 51 | exlimiv |  |-  ( E. x A = { x } -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 53 | 35 52 | biimtrdi |  |-  ( A e. V -> ( ( # ` A ) = 1 -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) ) | 
						
							| 54 |  | ssnpss |  |-  ( ( A ^m A ) C_ B -> -. B C. ( A ^m A ) ) | 
						
							| 55 | 15 1 | symgpssefmnd |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( Base ` G ) C. ( Base ` ( EndoFMnd ` A ) ) ) | 
						
							| 56 | 2 23 | eqtr4i |  |-  B = ( Base ` G ) | 
						
							| 57 | 45 | eqcomi |  |-  ( A ^m A ) = ( Base ` ( EndoFMnd ` A ) ) | 
						
							| 58 | 56 57 | psseq12i |  |-  ( B C. ( A ^m A ) <-> ( Base ` G ) C. ( Base ` ( EndoFMnd ` A ) ) ) | 
						
							| 59 | 55 58 | sylibr |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> B C. ( A ^m A ) ) | 
						
							| 60 | 54 59 | nsyl3 |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> -. ( A ^m A ) C_ B ) | 
						
							| 61 |  | fvexd |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( EndoFMnd ` A ) e. _V ) | 
						
							| 62 |  | f1osetex |  |-  { x | x : A -1-1-onto-> A } e. _V | 
						
							| 63 | 2 62 | eqeltri |  |-  B e. _V | 
						
							| 64 | 63 | a1i |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> B e. _V ) | 
						
							| 65 | 1 2 | symgval |  |-  G = ( ( EndoFMnd ` A ) |`s B ) | 
						
							| 66 | 65 57 | ressval2 |  |-  ( ( -. ( A ^m A ) C_ B /\ ( EndoFMnd ` A ) e. _V /\ B e. _V ) -> G = ( ( EndoFMnd ` A ) sSet <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. ) ) | 
						
							| 67 | 60 61 64 66 | syl3anc |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> G = ( ( EndoFMnd ` A ) sSet <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. ) ) | 
						
							| 68 |  | ovex |  |-  ( A ^m A ) e. _V | 
						
							| 69 | 68 | inex2 |  |-  ( B i^i ( A ^m A ) ) e. _V | 
						
							| 70 |  | setsval |  |-  ( ( ( EndoFMnd ` A ) e. _V /\ ( B i^i ( A ^m A ) ) e. _V ) -> ( ( EndoFMnd ` A ) sSet <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. ) = ( ( ( EndoFMnd ` A ) |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) ) | 
						
							| 71 | 61 69 70 | sylancl |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( ( EndoFMnd ` A ) sSet <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. ) = ( ( ( EndoFMnd ` A ) |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) ) | 
						
							| 72 | 16 | adantr |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 73 | 72 | reseq1d |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( ( EndoFMnd ` A ) |` ( _V \ { ( Base ` ndx ) } ) ) = ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } |` ( _V \ { ( Base ` ndx ) } ) ) ) | 
						
							| 74 | 73 | uneq1d |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( ( ( EndoFMnd ` A ) |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) = ( ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) ) | 
						
							| 75 |  | eqidd |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } = { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 76 |  | fvexd |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( +g ` ndx ) e. _V ) | 
						
							| 77 |  | fvexd |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( TopSet ` ndx ) e. _V ) | 
						
							| 78 | 3 68 | eqeltri |  |-  M e. _V | 
						
							| 79 | 78 78 | mpoex |  |-  ( f e. M , g e. M |-> ( f o. g ) ) e. _V | 
						
							| 80 | 4 79 | eqeltri |  |-  .+ e. _V | 
						
							| 81 | 80 | a1i |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> .+ e. _V ) | 
						
							| 82 | 5 | fvexi |  |-  J e. _V | 
						
							| 83 | 82 | a1i |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> J e. _V ) | 
						
							| 84 |  | basendxnplusgndx |  |-  ( Base ` ndx ) =/= ( +g ` ndx ) | 
						
							| 85 | 84 | necomi |  |-  ( +g ` ndx ) =/= ( Base ` ndx ) | 
						
							| 86 | 85 | a1i |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( +g ` ndx ) =/= ( Base ` ndx ) ) | 
						
							| 87 |  | tsetndx |  |-  ( TopSet ` ndx ) = 9 | 
						
							| 88 |  | 1re |  |-  1 e. RR | 
						
							| 89 |  | 1lt9 |  |-  1 < 9 | 
						
							| 90 | 88 89 | gtneii |  |-  9 =/= 1 | 
						
							| 91 |  | df-base |  |-  Base = Slot 1 | 
						
							| 92 |  | 1nn |  |-  1 e. NN | 
						
							| 93 | 91 92 | ndxarg |  |-  ( Base ` ndx ) = 1 | 
						
							| 94 | 90 93 | neeqtrri |  |-  9 =/= ( Base ` ndx ) | 
						
							| 95 | 87 94 | eqnetri |  |-  ( TopSet ` ndx ) =/= ( Base ` ndx ) | 
						
							| 96 | 95 | a1i |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( TopSet ` ndx ) =/= ( Base ` ndx ) ) | 
						
							| 97 | 75 76 77 81 83 86 96 | tpres |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } |` ( _V \ { ( Base ` ndx ) } ) ) = { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 98 | 97 | uneq1d |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) = ( { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) ) | 
						
							| 99 |  | uncom |  |-  ( { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) = ( { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } u. { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 100 |  | tpass |  |-  { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } = ( { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } u. { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 101 | 99 100 | eqtr4i |  |-  ( { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) = { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } | 
						
							| 102 | 1 56 | symgbasmap |  |-  ( x e. B -> x e. ( A ^m A ) ) | 
						
							| 103 | 102 | a1i |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( x e. B -> x e. ( A ^m A ) ) ) | 
						
							| 104 | 103 | ssrdv |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> B C_ ( A ^m A ) ) | 
						
							| 105 |  | dfss2 |  |-  ( B C_ ( A ^m A ) <-> ( B i^i ( A ^m A ) ) = B ) | 
						
							| 106 | 104 105 | sylib |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( B i^i ( A ^m A ) ) = B ) | 
						
							| 107 | 106 | opeq2d |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. = <. ( Base ` ndx ) , B >. ) | 
						
							| 108 | 107 | tpeq1d |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 109 | 101 108 | eqtrid |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 110 | 74 98 109 | 3eqtrd |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> ( ( ( EndoFMnd ` A ) |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 111 | 67 71 110 | 3eqtrd |  |-  ( ( A e. V /\ 1 < ( # ` A ) ) -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) | 
						
							| 112 | 111 | ex |  |-  ( A e. V -> ( 1 < ( # ` A ) -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) ) | 
						
							| 113 | 34 53 112 | 3jaod |  |-  ( A e. V -> ( ( ( # ` A ) = 0 \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) ) | 
						
							| 114 | 6 113 | mpd |  |-  ( A e. V -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |