Metamath Proof Explorer


Theorem t1r0

Description: A T_1 space is R_0. That is, the Kolmogorov quotient of a T_1 space is also T_1 (because they are homeomorphic). (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion t1r0
|- ( J e. Fre -> ( KQ ` J ) e. Fre )

Proof

Step Hyp Ref Expression
1 t1t0
 |-  ( J e. Fre -> J e. Kol2 )
2 kqhmph
 |-  ( J e. Kol2 <-> J ~= ( KQ ` J ) )
3 1 2 sylib
 |-  ( J e. Fre -> J ~= ( KQ ` J ) )
4 t1hmph
 |-  ( J ~= ( KQ ` J ) -> ( J e. Fre -> ( KQ ` J ) e. Fre ) )
5 3 4 mpcom
 |-  ( J e. Fre -> ( KQ ` J ) e. Fre )