Metamath Proof Explorer


Theorem t1sncld

Description: In a T_1 space, singletons are closed. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis ist0.1
|- X = U. J
Assertion t1sncld
|- ( ( J e. Fre /\ A e. X ) -> { A } e. ( Clsd ` J ) )

Proof

Step Hyp Ref Expression
1 ist0.1
 |-  X = U. J
2 1 ist1
 |-  ( J e. Fre <-> ( J e. Top /\ A. x e. X { x } e. ( Clsd ` J ) ) )
3 sneq
 |-  ( x = A -> { x } = { A } )
4 3 eleq1d
 |-  ( x = A -> ( { x } e. ( Clsd ` J ) <-> { A } e. ( Clsd ` J ) ) )
5 4 rspccv
 |-  ( A. x e. X { x } e. ( Clsd ` J ) -> ( A e. X -> { A } e. ( Clsd ` J ) ) )
6 2 5 simplbiim
 |-  ( J e. Fre -> ( A e. X -> { A } e. ( Clsd ` J ) ) )
7 6 imp
 |-  ( ( J e. Fre /\ A e. X ) -> { A } e. ( Clsd ` J ) )