Description: In a T_1 space, singletons are closed. (Contributed by Jeff Hankins, 1-Feb-2010)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ist0.1 | |- X = U. J |
|
Assertion | t1sncld | |- ( ( J e. Fre /\ A e. X ) -> { A } e. ( Clsd ` J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ist0.1 | |- X = U. J |
|
2 | 1 | ist1 | |- ( J e. Fre <-> ( J e. Top /\ A. x e. X { x } e. ( Clsd ` J ) ) ) |
3 | sneq | |- ( x = A -> { x } = { A } ) |
|
4 | 3 | eleq1d | |- ( x = A -> ( { x } e. ( Clsd ` J ) <-> { A } e. ( Clsd ` J ) ) ) |
5 | 4 | rspccv | |- ( A. x e. X { x } e. ( Clsd ` J ) -> ( A e. X -> { A } e. ( Clsd ` J ) ) ) |
6 | 2 5 | simplbiim | |- ( J e. Fre -> ( A e. X -> { A } e. ( Clsd ` J ) ) ) |
7 | 6 | imp | |- ( ( J e. Fre /\ A e. X ) -> { A } e. ( Clsd ` J ) ) |