| Step |
Hyp |
Ref |
Expression |
| 1 |
|
picn |
|- _pi e. CC |
| 2 |
|
4cn |
|- 4 e. CC |
| 3 |
|
4ne0 |
|- 4 =/= 0 |
| 4 |
1 2 3
|
divcli |
|- ( _pi / 4 ) e. CC |
| 5 |
|
sincos4thpi |
|- ( ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) /\ ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) ) |
| 6 |
5
|
simpri |
|- ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) |
| 7 |
|
sqrt2re |
|- ( sqrt ` 2 ) e. RR |
| 8 |
7
|
recni |
|- ( sqrt ` 2 ) e. CC |
| 9 |
|
2re |
|- 2 e. RR |
| 10 |
|
2pos |
|- 0 < 2 |
| 11 |
9 10
|
sqrtgt0ii |
|- 0 < ( sqrt ` 2 ) |
| 12 |
7 11
|
gt0ne0ii |
|- ( sqrt ` 2 ) =/= 0 |
| 13 |
|
recne0 |
|- ( ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) -> ( 1 / ( sqrt ` 2 ) ) =/= 0 ) |
| 14 |
8 12 13
|
mp2an |
|- ( 1 / ( sqrt ` 2 ) ) =/= 0 |
| 15 |
6 14
|
eqnetri |
|- ( cos ` ( _pi / 4 ) ) =/= 0 |
| 16 |
|
tanval |
|- ( ( ( _pi / 4 ) e. CC /\ ( cos ` ( _pi / 4 ) ) =/= 0 ) -> ( tan ` ( _pi / 4 ) ) = ( ( sin ` ( _pi / 4 ) ) / ( cos ` ( _pi / 4 ) ) ) ) |
| 17 |
4 15 16
|
mp2an |
|- ( tan ` ( _pi / 4 ) ) = ( ( sin ` ( _pi / 4 ) ) / ( cos ` ( _pi / 4 ) ) ) |
| 18 |
5
|
simpli |
|- ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) |
| 19 |
18 6
|
oveq12i |
|- ( ( sin ` ( _pi / 4 ) ) / ( cos ` ( _pi / 4 ) ) ) = ( ( 1 / ( sqrt ` 2 ) ) / ( 1 / ( sqrt ` 2 ) ) ) |
| 20 |
8 12
|
reccli |
|- ( 1 / ( sqrt ` 2 ) ) e. CC |
| 21 |
20 14
|
dividi |
|- ( ( 1 / ( sqrt ` 2 ) ) / ( 1 / ( sqrt ` 2 ) ) ) = 1 |
| 22 |
17 19 21
|
3eqtri |
|- ( tan ` ( _pi / 4 ) ) = 1 |