| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pire |
|- _pi e. RR |
| 2 |
|
4nn |
|- 4 e. NN |
| 3 |
|
nndivre |
|- ( ( _pi e. RR /\ 4 e. NN ) -> ( _pi / 4 ) e. RR ) |
| 4 |
1 2 3
|
mp2an |
|- ( _pi / 4 ) e. RR |
| 5 |
4
|
recni |
|- ( _pi / 4 ) e. CC |
| 6 |
|
sincos4thpi |
|- ( ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) /\ ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) ) |
| 7 |
6
|
simpri |
|- ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) |
| 8 |
|
sqrt2re |
|- ( sqrt ` 2 ) e. RR |
| 9 |
8
|
recni |
|- ( sqrt ` 2 ) e. CC |
| 10 |
|
2re |
|- 2 e. RR |
| 11 |
|
0le2 |
|- 0 <_ 2 |
| 12 |
|
resqrtth |
|- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( ( sqrt ` 2 ) ^ 2 ) = 2 ) |
| 13 |
10 11 12
|
mp2an |
|- ( ( sqrt ` 2 ) ^ 2 ) = 2 |
| 14 |
|
2ne0 |
|- 2 =/= 0 |
| 15 |
13 14
|
eqnetri |
|- ( ( sqrt ` 2 ) ^ 2 ) =/= 0 |
| 16 |
|
sqne0 |
|- ( ( sqrt ` 2 ) e. CC -> ( ( ( sqrt ` 2 ) ^ 2 ) =/= 0 <-> ( sqrt ` 2 ) =/= 0 ) ) |
| 17 |
9 16
|
ax-mp |
|- ( ( ( sqrt ` 2 ) ^ 2 ) =/= 0 <-> ( sqrt ` 2 ) =/= 0 ) |
| 18 |
15 17
|
mpbi |
|- ( sqrt ` 2 ) =/= 0 |
| 19 |
|
recne0 |
|- ( ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) -> ( 1 / ( sqrt ` 2 ) ) =/= 0 ) |
| 20 |
9 18 19
|
mp2an |
|- ( 1 / ( sqrt ` 2 ) ) =/= 0 |
| 21 |
7 20
|
eqnetri |
|- ( cos ` ( _pi / 4 ) ) =/= 0 |
| 22 |
|
tanval |
|- ( ( ( _pi / 4 ) e. CC /\ ( cos ` ( _pi / 4 ) ) =/= 0 ) -> ( tan ` ( _pi / 4 ) ) = ( ( sin ` ( _pi / 4 ) ) / ( cos ` ( _pi / 4 ) ) ) ) |
| 23 |
5 21 22
|
mp2an |
|- ( tan ` ( _pi / 4 ) ) = ( ( sin ` ( _pi / 4 ) ) / ( cos ` ( _pi / 4 ) ) ) |
| 24 |
6
|
simpli |
|- ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) |
| 25 |
24 7
|
oveq12i |
|- ( ( sin ` ( _pi / 4 ) ) / ( cos ` ( _pi / 4 ) ) ) = ( ( 1 / ( sqrt ` 2 ) ) / ( 1 / ( sqrt ` 2 ) ) ) |
| 26 |
9 18
|
reccli |
|- ( 1 / ( sqrt ` 2 ) ) e. CC |
| 27 |
26 20
|
dividi |
|- ( ( 1 / ( sqrt ` 2 ) ) / ( 1 / ( sqrt ` 2 ) ) ) = 1 |
| 28 |
23 25 27
|
3eqtri |
|- ( tan ` ( _pi / 4 ) ) = 1 |