| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elioore |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. RR ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> A e. RR ) | 
						
							| 3 | 2 | renegcld |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A e. RR ) | 
						
							| 4 | 1 | lt0neg1d |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < 0 <-> 0 < -u A ) ) | 
						
							| 5 | 4 | biimpa |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 < -u A ) | 
						
							| 6 |  | eliooord |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( -u ( _pi / 2 ) < A /\ A < ( _pi / 2 ) ) ) | 
						
							| 7 | 6 | simpld |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> -u ( _pi / 2 ) < A ) | 
						
							| 8 | 7 | adantr |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u ( _pi / 2 ) < A ) | 
						
							| 9 |  | halfpire |  |-  ( _pi / 2 ) e. RR | 
						
							| 10 |  | ltnegcon1 |  |-  ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( -u ( _pi / 2 ) < A <-> -u A < ( _pi / 2 ) ) ) | 
						
							| 11 | 9 2 10 | sylancr |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( -u ( _pi / 2 ) < A <-> -u A < ( _pi / 2 ) ) ) | 
						
							| 12 | 8 11 | mpbid |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A < ( _pi / 2 ) ) | 
						
							| 13 |  | 0xr |  |-  0 e. RR* | 
						
							| 14 | 9 | rexri |  |-  ( _pi / 2 ) e. RR* | 
						
							| 15 |  | elioo2 |  |-  ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( -u A e. ( 0 (,) ( _pi / 2 ) ) <-> ( -u A e. RR /\ 0 < -u A /\ -u A < ( _pi / 2 ) ) ) ) | 
						
							| 16 | 13 14 15 | mp2an |  |-  ( -u A e. ( 0 (,) ( _pi / 2 ) ) <-> ( -u A e. RR /\ 0 < -u A /\ -u A < ( _pi / 2 ) ) ) | 
						
							| 17 | 3 5 12 16 | syl3anbrc |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A e. ( 0 (,) ( _pi / 2 ) ) ) | 
						
							| 18 |  | sincosq1sgn |  |-  ( -u A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` -u A ) /\ 0 < ( cos ` -u A ) ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( 0 < ( sin ` -u A ) /\ 0 < ( cos ` -u A ) ) ) | 
						
							| 20 | 19 | simprd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 < ( cos ` -u A ) ) | 
						
							| 21 | 20 | gt0ne0d |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( cos ` -u A ) =/= 0 ) | 
						
							| 22 | 3 21 | retancld |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` -u A ) e. RR ) | 
						
							| 23 |  | tangtx |  |-  ( -u A e. ( 0 (,) ( _pi / 2 ) ) -> -u A < ( tan ` -u A ) ) | 
						
							| 24 | 17 23 | syl |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A < ( tan ` -u A ) ) | 
						
							| 25 | 3 22 24 | ltled |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A <_ ( tan ` -u A ) ) | 
						
							| 26 |  | 0re |  |-  0 e. RR | 
						
							| 27 |  | ltle |  |-  ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 -> A <_ 0 ) ) | 
						
							| 28 | 1 26 27 | sylancl |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < 0 -> A <_ 0 ) ) | 
						
							| 29 | 28 | imp |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> A <_ 0 ) | 
						
							| 30 | 2 29 | absnidd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` A ) = -u A ) | 
						
							| 31 | 1 | recnd |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. CC ) | 
						
							| 32 | 31 | adantr |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> A e. CC ) | 
						
							| 33 | 32 | negnegd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u -u A = A ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` -u -u A ) = ( tan ` A ) ) | 
						
							| 35 | 32 | negcld |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A e. CC ) | 
						
							| 36 |  | tanneg |  |-  ( ( -u A e. CC /\ ( cos ` -u A ) =/= 0 ) -> ( tan ` -u -u A ) = -u ( tan ` -u A ) ) | 
						
							| 37 | 35 21 36 | syl2anc |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` -u -u A ) = -u ( tan ` -u A ) ) | 
						
							| 38 | 34 37 | eqtr3d |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` A ) = -u ( tan ` -u A ) ) | 
						
							| 39 | 38 | fveq2d |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` ( tan ` A ) ) = ( abs ` -u ( tan ` -u A ) ) ) | 
						
							| 40 | 22 | recnd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` -u A ) e. CC ) | 
						
							| 41 | 40 | absnegd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` -u ( tan ` -u A ) ) = ( abs ` ( tan ` -u A ) ) ) | 
						
							| 42 |  | 0red |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 e. RR ) | 
						
							| 43 |  | ltle |  |-  ( ( 0 e. RR /\ -u A e. RR ) -> ( 0 < -u A -> 0 <_ -u A ) ) | 
						
							| 44 | 26 3 43 | sylancr |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( 0 < -u A -> 0 <_ -u A ) ) | 
						
							| 45 | 5 44 | mpd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 <_ -u A ) | 
						
							| 46 | 42 3 22 45 25 | letrd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 <_ ( tan ` -u A ) ) | 
						
							| 47 | 22 46 | absidd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` ( tan ` -u A ) ) = ( tan ` -u A ) ) | 
						
							| 48 | 39 41 47 | 3eqtrd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` ( tan ` A ) ) = ( tan ` -u A ) ) | 
						
							| 49 | 25 30 48 | 3brtr4d |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) | 
						
							| 50 |  | abs0 |  |-  ( abs ` 0 ) = 0 | 
						
							| 51 | 50 26 | eqeltri |  |-  ( abs ` 0 ) e. RR | 
						
							| 52 | 51 | leidi |  |-  ( abs ` 0 ) <_ ( abs ` 0 ) | 
						
							| 53 | 52 | a1i |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( abs ` 0 ) <_ ( abs ` 0 ) ) | 
						
							| 54 |  | simpr |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> A = 0 ) | 
						
							| 55 | 54 | fveq2d |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( abs ` A ) = ( abs ` 0 ) ) | 
						
							| 56 | 54 | fveq2d |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( tan ` A ) = ( tan ` 0 ) ) | 
						
							| 57 |  | tan0 |  |-  ( tan ` 0 ) = 0 | 
						
							| 58 | 56 57 | eqtrdi |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( tan ` A ) = 0 ) | 
						
							| 59 | 58 | fveq2d |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( abs ` ( tan ` A ) ) = ( abs ` 0 ) ) | 
						
							| 60 | 53 55 59 | 3brtr4d |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) | 
						
							| 61 | 1 | adantr |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A e. RR ) | 
						
							| 62 |  | simpr |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 < A ) | 
						
							| 63 | 6 | simprd |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A < ( _pi / 2 ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A < ( _pi / 2 ) ) | 
						
							| 65 |  | elioo2 |  |-  ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) ) | 
						
							| 66 | 13 14 65 | mp2an |  |-  ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) | 
						
							| 67 | 61 62 64 66 | syl3anbrc |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A e. ( 0 (,) ( _pi / 2 ) ) ) | 
						
							| 68 |  | sincosq1sgn |  |-  ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) | 
						
							| 69 | 67 68 | syl |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) | 
						
							| 70 | 69 | simprd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 < ( cos ` A ) ) | 
						
							| 71 | 70 | gt0ne0d |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( cos ` A ) =/= 0 ) | 
						
							| 72 | 61 71 | retancld |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( tan ` A ) e. RR ) | 
						
							| 73 |  | tangtx |  |-  ( A e. ( 0 (,) ( _pi / 2 ) ) -> A < ( tan ` A ) ) | 
						
							| 74 | 67 73 | syl |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A < ( tan ` A ) ) | 
						
							| 75 | 61 72 74 | ltled |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A <_ ( tan ` A ) ) | 
						
							| 76 |  | ltle |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 77 | 26 1 76 | sylancr |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 78 | 77 | imp |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 <_ A ) | 
						
							| 79 | 61 78 | absidd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( abs ` A ) = A ) | 
						
							| 80 |  | 0red |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 e. RR ) | 
						
							| 81 | 80 61 72 78 75 | letrd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 <_ ( tan ` A ) ) | 
						
							| 82 | 72 81 | absidd |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( abs ` ( tan ` A ) ) = ( tan ` A ) ) | 
						
							| 83 | 75 79 82 | 3brtr4d |  |-  ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) | 
						
							| 84 |  | lttri4 |  |-  ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) | 
						
							| 85 | 1 26 84 | sylancl |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) | 
						
							| 86 | 49 60 83 85 | mpjao3dan |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) |