| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addcl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( A + B ) e. CC ) | 
						
							| 3 |  | simpr3 |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( cos ` ( A + B ) ) =/= 0 ) | 
						
							| 4 |  | tanval |  |-  ( ( ( A + B ) e. CC /\ ( cos ` ( A + B ) ) =/= 0 ) -> ( tan ` ( A + B ) ) = ( ( sin ` ( A + B ) ) / ( cos ` ( A + B ) ) ) ) | 
						
							| 5 | 2 3 4 | syl2anc |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` ( A + B ) ) = ( ( sin ` ( A + B ) ) / ( cos ` ( A + B ) ) ) ) | 
						
							| 6 |  | sinadd |  |-  ( ( A e. CC /\ B e. CC ) -> ( sin ` ( A + B ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( sin ` ( A + B ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 8 |  | cosadd |  |-  ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 10 | 7 9 | oveq12d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( sin ` ( A + B ) ) / ( cos ` ( A + B ) ) ) = ( ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) / ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) ) | 
						
							| 11 |  | simpll |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> A e. CC ) | 
						
							| 12 | 11 | coscld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( cos ` A ) e. CC ) | 
						
							| 13 |  | simplr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> B e. CC ) | 
						
							| 14 | 13 | coscld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( cos ` B ) e. CC ) | 
						
							| 15 | 12 14 | mulcld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) | 
						
							| 16 |  | simpr1 |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( cos ` A ) =/= 0 ) | 
						
							| 17 | 11 16 | tancld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` A ) e. CC ) | 
						
							| 18 |  | simpr2 |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( cos ` B ) =/= 0 ) | 
						
							| 19 | 13 18 | tancld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` B ) e. CC ) | 
						
							| 20 | 15 17 19 | adddid |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) + ( tan ` B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` A ) ) + ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` B ) ) ) ) | 
						
							| 21 | 12 14 17 | mul32d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` A ) ) = ( ( ( cos ` A ) x. ( tan ` A ) ) x. ( cos ` B ) ) ) | 
						
							| 22 |  | tanval |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 23 | 11 16 22 | syl2anc |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` A ) x. ( tan ` A ) ) = ( ( cos ` A ) x. ( ( sin ` A ) / ( cos ` A ) ) ) ) | 
						
							| 25 | 11 | sincld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( sin ` A ) e. CC ) | 
						
							| 26 | 25 12 16 | divcan2d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` A ) x. ( ( sin ` A ) / ( cos ` A ) ) ) = ( sin ` A ) ) | 
						
							| 27 | 24 26 | eqtrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` A ) x. ( tan ` A ) ) = ( sin ` A ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( tan ` A ) ) x. ( cos ` B ) ) = ( ( sin ` A ) x. ( cos ` B ) ) ) | 
						
							| 29 | 21 28 | eqtrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` A ) ) = ( ( sin ` A ) x. ( cos ` B ) ) ) | 
						
							| 30 | 12 14 19 | mulassd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` B ) ) = ( ( cos ` A ) x. ( ( cos ` B ) x. ( tan ` B ) ) ) ) | 
						
							| 31 |  | tanval |  |-  ( ( B e. CC /\ ( cos ` B ) =/= 0 ) -> ( tan ` B ) = ( ( sin ` B ) / ( cos ` B ) ) ) | 
						
							| 32 | 13 18 31 | syl2anc |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` B ) = ( ( sin ` B ) / ( cos ` B ) ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` B ) x. ( tan ` B ) ) = ( ( cos ` B ) x. ( ( sin ` B ) / ( cos ` B ) ) ) ) | 
						
							| 34 | 13 | sincld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( sin ` B ) e. CC ) | 
						
							| 35 | 34 14 18 | divcan2d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` B ) x. ( ( sin ` B ) / ( cos ` B ) ) ) = ( sin ` B ) ) | 
						
							| 36 | 33 35 | eqtrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` B ) x. ( tan ` B ) ) = ( sin ` B ) ) | 
						
							| 37 | 36 | oveq2d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` A ) x. ( ( cos ` B ) x. ( tan ` B ) ) ) = ( ( cos ` A ) x. ( sin ` B ) ) ) | 
						
							| 38 | 30 37 | eqtrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` B ) ) = ( ( cos ` A ) x. ( sin ` B ) ) ) | 
						
							| 39 | 29 38 | oveq12d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` A ) ) + ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` B ) ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 40 | 20 39 | eqtrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) + ( tan ` B ) ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 41 |  | 1cnd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> 1 e. CC ) | 
						
							| 42 | 17 19 | mulcld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( tan ` A ) x. ( tan ` B ) ) e. CC ) | 
						
							| 43 | 15 41 42 | subdid |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. 1 ) - ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) x. ( tan ` B ) ) ) ) ) | 
						
							| 44 | 15 | mulridd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. 1 ) = ( ( cos ` A ) x. ( cos ` B ) ) ) | 
						
							| 45 | 12 14 17 19 | mul4d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) x. ( tan ` B ) ) ) = ( ( ( cos ` A ) x. ( tan ` A ) ) x. ( ( cos ` B ) x. ( tan ` B ) ) ) ) | 
						
							| 46 | 27 36 | oveq12d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( tan ` A ) ) x. ( ( cos ` B ) x. ( tan ` B ) ) ) = ( ( sin ` A ) x. ( sin ` B ) ) ) | 
						
							| 47 | 45 46 | eqtrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) x. ( tan ` B ) ) ) = ( ( sin ` A ) x. ( sin ` B ) ) ) | 
						
							| 48 | 44 47 | oveq12d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. 1 ) - ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) x. ( tan ` B ) ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 49 | 43 48 | eqtrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 50 | 40 49 | oveq12d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) + ( tan ` B ) ) ) / ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) ) = ( ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) / ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) ) | 
						
							| 51 | 17 19 | addcld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( tan ` A ) + ( tan ` B ) ) e. CC ) | 
						
							| 52 |  | ax-1cn |  |-  1 e. CC | 
						
							| 53 |  | subcl |  |-  ( ( 1 e. CC /\ ( ( tan ` A ) x. ( tan ` B ) ) e. CC ) -> ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) e. CC ) | 
						
							| 54 | 52 42 53 | sylancr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) e. CC ) | 
						
							| 55 |  | tanaddlem |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` ( A + B ) ) =/= 0 <-> ( ( tan ` A ) x. ( tan ` B ) ) =/= 1 ) ) | 
						
							| 56 | 55 | 3adantr3 |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` ( A + B ) ) =/= 0 <-> ( ( tan ` A ) x. ( tan ` B ) ) =/= 1 ) ) | 
						
							| 57 | 3 56 | mpbid |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( tan ` A ) x. ( tan ` B ) ) =/= 1 ) | 
						
							| 58 | 57 | necomd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> 1 =/= ( ( tan ` A ) x. ( tan ` B ) ) ) | 
						
							| 59 |  | subeq0 |  |-  ( ( 1 e. CC /\ ( ( tan ` A ) x. ( tan ` B ) ) e. CC ) -> ( ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) = 0 <-> 1 = ( ( tan ` A ) x. ( tan ` B ) ) ) ) | 
						
							| 60 | 59 | necon3bid |  |-  ( ( 1 e. CC /\ ( ( tan ` A ) x. ( tan ` B ) ) e. CC ) -> ( ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) =/= 0 <-> 1 =/= ( ( tan ` A ) x. ( tan ` B ) ) ) ) | 
						
							| 61 | 52 42 60 | sylancr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) =/= 0 <-> 1 =/= ( ( tan ` A ) x. ( tan ` B ) ) ) ) | 
						
							| 62 | 58 61 | mpbird |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) =/= 0 ) | 
						
							| 63 | 12 14 16 18 | mulne0d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` A ) x. ( cos ` B ) ) =/= 0 ) | 
						
							| 64 | 51 54 15 62 63 | divcan5d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) + ( tan ` B ) ) ) / ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) ) = ( ( ( tan ` A ) + ( tan ` B ) ) / ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) ) | 
						
							| 65 | 10 50 64 | 3eqtr2rd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( tan ` A ) + ( tan ` B ) ) / ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) = ( ( sin ` ( A + B ) ) / ( cos ` ( A + B ) ) ) ) | 
						
							| 66 | 5 65 | eqtr4d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` ( A + B ) ) = ( ( ( tan ` A ) + ( tan ` B ) ) / ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) ) |