| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 2 | 1 | ad2antrr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( cos ` A ) e. CC ) | 
						
							| 3 |  | coscl |  |-  ( B e. CC -> ( cos ` B ) e. CC ) | 
						
							| 4 | 3 | ad2antlr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( cos ` B ) e. CC ) | 
						
							| 5 | 2 4 | mulcld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) | 
						
							| 6 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 7 | 6 | ad2antrr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( sin ` A ) e. CC ) | 
						
							| 8 |  | sincl |  |-  ( B e. CC -> ( sin ` B ) e. CC ) | 
						
							| 9 | 8 | ad2antlr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( sin ` B ) e. CC ) | 
						
							| 10 | 7 9 | mulcld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) | 
						
							| 11 | 5 10 | subeq0ad |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) = 0 <-> ( ( cos ` A ) x. ( cos ` B ) ) = ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 12 |  | cosadd |  |-  ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 14 | 13 | eqeq1d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` ( A + B ) ) = 0 <-> ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) = 0 ) ) | 
						
							| 15 |  | tanval |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 16 | 15 | ad2ant2r |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 17 |  | tanval |  |-  ( ( B e. CC /\ ( cos ` B ) =/= 0 ) -> ( tan ` B ) = ( ( sin ` B ) / ( cos ` B ) ) ) | 
						
							| 18 | 17 | ad2ant2l |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( tan ` B ) = ( ( sin ` B ) / ( cos ` B ) ) ) | 
						
							| 19 | 16 18 | oveq12d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( tan ` A ) x. ( tan ` B ) ) = ( ( ( sin ` A ) / ( cos ` A ) ) x. ( ( sin ` B ) / ( cos ` B ) ) ) ) | 
						
							| 20 |  | simprl |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( cos ` A ) =/= 0 ) | 
						
							| 21 |  | simprr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( cos ` B ) =/= 0 ) | 
						
							| 22 | 7 2 9 4 20 21 | divmuldivd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( sin ` A ) / ( cos ` A ) ) x. ( ( sin ` B ) / ( cos ` B ) ) ) = ( ( ( sin ` A ) x. ( sin ` B ) ) / ( ( cos ` A ) x. ( cos ` B ) ) ) ) | 
						
							| 23 | 19 22 | eqtrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( tan ` A ) x. ( tan ` B ) ) = ( ( ( sin ` A ) x. ( sin ` B ) ) / ( ( cos ` A ) x. ( cos ` B ) ) ) ) | 
						
							| 24 | 23 | eqeq1d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( tan ` A ) x. ( tan ` B ) ) = 1 <-> ( ( ( sin ` A ) x. ( sin ` B ) ) / ( ( cos ` A ) x. ( cos ` B ) ) ) = 1 ) ) | 
						
							| 25 |  | 1cnd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> 1 e. CC ) | 
						
							| 26 | 2 4 20 21 | mulne0d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` A ) x. ( cos ` B ) ) =/= 0 ) | 
						
							| 27 | 10 5 25 26 | divmuld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( ( sin ` A ) x. ( sin ` B ) ) / ( ( cos ` A ) x. ( cos ` B ) ) ) = 1 <-> ( ( ( cos ` A ) x. ( cos ` B ) ) x. 1 ) = ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 28 | 5 | mulridd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. 1 ) = ( ( cos ` A ) x. ( cos ` B ) ) ) | 
						
							| 29 | 28 | eqeq1d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. 1 ) = ( ( sin ` A ) x. ( sin ` B ) ) <-> ( ( cos ` A ) x. ( cos ` B ) ) = ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 30 | 24 27 29 | 3bitrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( ( tan ` A ) x. ( tan ` B ) ) = 1 <-> ( ( cos ` A ) x. ( cos ` B ) ) = ( ( sin ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 31 | 11 14 30 | 3bitr4d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` ( A + B ) ) = 0 <-> ( ( tan ` A ) x. ( tan ` B ) ) = 1 ) ) | 
						
							| 32 | 31 | necon3bid |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` ( A + B ) ) =/= 0 <-> ( ( tan ` A ) x. ( tan ` B ) ) =/= 1 ) ) |