| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tanval |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 2 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 3 | 2 | adantr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sin ` A ) e. CC ) | 
						
							| 4 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 5 | 4 | adantr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) e. CC ) | 
						
							| 6 |  | simpr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) =/= 0 ) | 
						
							| 7 | 3 5 6 | divcld |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) / ( cos ` A ) ) e. CC ) | 
						
							| 8 | 1 7 | eqeltrd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. CC ) |