Step |
Hyp |
Ref |
Expression |
1 |
|
retanhcl |
|- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) e. RR ) |
2 |
|
ax-icn |
|- _i e. CC |
3 |
|
recn |
|- ( A e. RR -> A e. CC ) |
4 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
5 |
2 3 4
|
sylancr |
|- ( A e. RR -> ( _i x. A ) e. CC ) |
6 |
|
rpcoshcl |
|- ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR+ ) |
7 |
6
|
rpne0d |
|- ( A e. RR -> ( cos ` ( _i x. A ) ) =/= 0 ) |
8 |
5 7
|
tancld |
|- ( A e. RR -> ( tan ` ( _i x. A ) ) e. CC ) |
9 |
2
|
a1i |
|- ( A e. RR -> _i e. CC ) |
10 |
|
ine0 |
|- _i =/= 0 |
11 |
10
|
a1i |
|- ( A e. RR -> _i =/= 0 ) |
12 |
8 9 11
|
divnegd |
|- ( A e. RR -> -u ( ( tan ` ( _i x. A ) ) / _i ) = ( -u ( tan ` ( _i x. A ) ) / _i ) ) |
13 |
|
mulneg2 |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
14 |
2 3 13
|
sylancr |
|- ( A e. RR -> ( _i x. -u A ) = -u ( _i x. A ) ) |
15 |
14
|
fveq2d |
|- ( A e. RR -> ( tan ` ( _i x. -u A ) ) = ( tan ` -u ( _i x. A ) ) ) |
16 |
|
tanneg |
|- ( ( ( _i x. A ) e. CC /\ ( cos ` ( _i x. A ) ) =/= 0 ) -> ( tan ` -u ( _i x. A ) ) = -u ( tan ` ( _i x. A ) ) ) |
17 |
5 7 16
|
syl2anc |
|- ( A e. RR -> ( tan ` -u ( _i x. A ) ) = -u ( tan ` ( _i x. A ) ) ) |
18 |
15 17
|
eqtrd |
|- ( A e. RR -> ( tan ` ( _i x. -u A ) ) = -u ( tan ` ( _i x. A ) ) ) |
19 |
18
|
oveq1d |
|- ( A e. RR -> ( ( tan ` ( _i x. -u A ) ) / _i ) = ( -u ( tan ` ( _i x. A ) ) / _i ) ) |
20 |
12 19
|
eqtr4d |
|- ( A e. RR -> -u ( ( tan ` ( _i x. A ) ) / _i ) = ( ( tan ` ( _i x. -u A ) ) / _i ) ) |
21 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
22 |
|
tanhlt1 |
|- ( -u A e. RR -> ( ( tan ` ( _i x. -u A ) ) / _i ) < 1 ) |
23 |
21 22
|
syl |
|- ( A e. RR -> ( ( tan ` ( _i x. -u A ) ) / _i ) < 1 ) |
24 |
20 23
|
eqbrtrd |
|- ( A e. RR -> -u ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) |
25 |
|
1re |
|- 1 e. RR |
26 |
|
ltnegcon1 |
|- ( ( ( ( tan ` ( _i x. A ) ) / _i ) e. RR /\ 1 e. RR ) -> ( -u ( ( tan ` ( _i x. A ) ) / _i ) < 1 <-> -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) ) ) |
27 |
1 25 26
|
sylancl |
|- ( A e. RR -> ( -u ( ( tan ` ( _i x. A ) ) / _i ) < 1 <-> -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) ) ) |
28 |
24 27
|
mpbid |
|- ( A e. RR -> -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) ) |
29 |
|
tanhlt1 |
|- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) |
30 |
|
neg1rr |
|- -u 1 e. RR |
31 |
30
|
rexri |
|- -u 1 e. RR* |
32 |
25
|
rexri |
|- 1 e. RR* |
33 |
|
elioo2 |
|- ( ( -u 1 e. RR* /\ 1 e. RR* ) -> ( ( ( tan ` ( _i x. A ) ) / _i ) e. ( -u 1 (,) 1 ) <-> ( ( ( tan ` ( _i x. A ) ) / _i ) e. RR /\ -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) /\ ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) ) ) |
34 |
31 32 33
|
mp2an |
|- ( ( ( tan ` ( _i x. A ) ) / _i ) e. ( -u 1 (,) 1 ) <-> ( ( ( tan ` ( _i x. A ) ) / _i ) e. RR /\ -u 1 < ( ( tan ` ( _i x. A ) ) / _i ) /\ ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) ) |
35 |
1 28 29 34
|
syl3anbrc |
|- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) e. ( -u 1 (,) 1 ) ) |