Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|- _i e. CC |
2 |
|
recn |
|- ( A e. RR -> A e. CC ) |
3 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
4 |
1 2 3
|
sylancr |
|- ( A e. RR -> ( _i x. A ) e. CC ) |
5 |
|
rpcoshcl |
|- ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR+ ) |
6 |
5
|
rpne0d |
|- ( A e. RR -> ( cos ` ( _i x. A ) ) =/= 0 ) |
7 |
|
tanval |
|- ( ( ( _i x. A ) e. CC /\ ( cos ` ( _i x. A ) ) =/= 0 ) -> ( tan ` ( _i x. A ) ) = ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) ) |
8 |
4 6 7
|
syl2anc |
|- ( A e. RR -> ( tan ` ( _i x. A ) ) = ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) ) |
9 |
8
|
oveq1d |
|- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) / _i ) ) |
10 |
4
|
sincld |
|- ( A e. RR -> ( sin ` ( _i x. A ) ) e. CC ) |
11 |
|
recoshcl |
|- ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR ) |
12 |
11
|
recnd |
|- ( A e. RR -> ( cos ` ( _i x. A ) ) e. CC ) |
13 |
1
|
a1i |
|- ( A e. RR -> _i e. CC ) |
14 |
|
ine0 |
|- _i =/= 0 |
15 |
14
|
a1i |
|- ( A e. RR -> _i =/= 0 ) |
16 |
10 12 13 6 15
|
divdiv32d |
|- ( A e. RR -> ( ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) ) |
17 |
|
sinhval |
|- ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
18 |
2 17
|
syl |
|- ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
19 |
|
coshval |
|- ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) |
20 |
2 19
|
syl |
|- ( A e. RR -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) |
21 |
18 20
|
oveq12d |
|- ( A e. RR -> ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) / ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) |
22 |
9 16 21
|
3eqtrd |
|- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) / ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) |
23 |
|
reefcl |
|- ( A e. RR -> ( exp ` A ) e. RR ) |
24 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
25 |
24
|
reefcld |
|- ( A e. RR -> ( exp ` -u A ) e. RR ) |
26 |
23 25
|
resubcld |
|- ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) e. RR ) |
27 |
26
|
recnd |
|- ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) e. CC ) |
28 |
23 25
|
readdcld |
|- ( A e. RR -> ( ( exp ` A ) + ( exp ` -u A ) ) e. RR ) |
29 |
28
|
recnd |
|- ( A e. RR -> ( ( exp ` A ) + ( exp ` -u A ) ) e. CC ) |
30 |
|
2cnd |
|- ( A e. RR -> 2 e. CC ) |
31 |
20 6
|
eqnetrrd |
|- ( A e. RR -> ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) =/= 0 ) |
32 |
|
2ne0 |
|- 2 =/= 0 |
33 |
32
|
a1i |
|- ( A e. RR -> 2 =/= 0 ) |
34 |
29 30 33
|
divne0bd |
|- ( A e. RR -> ( ( ( exp ` A ) + ( exp ` -u A ) ) =/= 0 <-> ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) =/= 0 ) ) |
35 |
31 34
|
mpbird |
|- ( A e. RR -> ( ( exp ` A ) + ( exp ` -u A ) ) =/= 0 ) |
36 |
27 29 30 35 33
|
divcan7d |
|- ( A e. RR -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) / ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) ) |
37 |
22 36
|
eqtrd |
|- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) ) |
38 |
24
|
rpefcld |
|- ( A e. RR -> ( exp ` -u A ) e. RR+ ) |
39 |
23 38
|
ltsubrpd |
|- ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) < ( exp ` A ) ) |
40 |
23 38
|
ltaddrpd |
|- ( A e. RR -> ( exp ` A ) < ( ( exp ` A ) + ( exp ` -u A ) ) ) |
41 |
26 23 28 39 40
|
lttrd |
|- ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) < ( ( exp ` A ) + ( exp ` -u A ) ) ) |
42 |
29
|
mulid1d |
|- ( A e. RR -> ( ( ( exp ` A ) + ( exp ` -u A ) ) x. 1 ) = ( ( exp ` A ) + ( exp ` -u A ) ) ) |
43 |
41 42
|
breqtrrd |
|- ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) < ( ( ( exp ` A ) + ( exp ` -u A ) ) x. 1 ) ) |
44 |
|
1red |
|- ( A e. RR -> 1 e. RR ) |
45 |
|
efgt0 |
|- ( A e. RR -> 0 < ( exp ` A ) ) |
46 |
|
efgt0 |
|- ( -u A e. RR -> 0 < ( exp ` -u A ) ) |
47 |
24 46
|
syl |
|- ( A e. RR -> 0 < ( exp ` -u A ) ) |
48 |
23 25 45 47
|
addgt0d |
|- ( A e. RR -> 0 < ( ( exp ` A ) + ( exp ` -u A ) ) ) |
49 |
|
ltdivmul |
|- ( ( ( ( exp ` A ) - ( exp ` -u A ) ) e. RR /\ 1 e. RR /\ ( ( ( exp ` A ) + ( exp ` -u A ) ) e. RR /\ 0 < ( ( exp ` A ) + ( exp ` -u A ) ) ) ) -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) < 1 <-> ( ( exp ` A ) - ( exp ` -u A ) ) < ( ( ( exp ` A ) + ( exp ` -u A ) ) x. 1 ) ) ) |
50 |
26 44 28 48 49
|
syl112anc |
|- ( A e. RR -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) < 1 <-> ( ( exp ` A ) - ( exp ` -u A ) ) < ( ( ( exp ` A ) + ( exp ` -u A ) ) x. 1 ) ) ) |
51 |
43 50
|
mpbird |
|- ( A e. RR -> ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) < 1 ) |
52 |
37 51
|
eqbrtrd |
|- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) |