| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 2 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 3 |  | divneg |  |-  ( ( ( sin ` A ) e. CC /\ ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( sin ` A ) / ( cos ` A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 4 | 2 3 | syl3an1 |  |-  ( ( A e. CC /\ ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( sin ` A ) / ( cos ` A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 5 | 1 4 | syl3an2 |  |-  ( ( A e. CC /\ A e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( sin ` A ) / ( cos ` A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 6 | 5 | 3anidm12 |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( sin ` A ) / ( cos ` A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 7 |  | tanval |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 8 | 7 | negeqd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( tan ` A ) = -u ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 9 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 10 |  | cosneg |  |-  ( A e. CC -> ( cos ` -u A ) = ( cos ` A ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` -u A ) = ( cos ` A ) ) | 
						
							| 12 |  | simpr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) =/= 0 ) | 
						
							| 13 | 11 12 | eqnetrd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` -u A ) =/= 0 ) | 
						
							| 14 |  | tanval |  |-  ( ( -u A e. CC /\ ( cos ` -u A ) =/= 0 ) -> ( tan ` -u A ) = ( ( sin ` -u A ) / ( cos ` -u A ) ) ) | 
						
							| 15 | 9 13 14 | syl2an2r |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` -u A ) = ( ( sin ` -u A ) / ( cos ` -u A ) ) ) | 
						
							| 16 |  | sinneg |  |-  ( A e. CC -> ( sin ` -u A ) = -u ( sin ` A ) ) | 
						
							| 17 | 16 10 | oveq12d |  |-  ( A e. CC -> ( ( sin ` -u A ) / ( cos ` -u A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` -u A ) / ( cos ` -u A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 19 | 15 18 | eqtrd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` -u A ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 20 | 6 8 19 | 3eqtr4rd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` -u A ) = -u ( tan ` A ) ) |