Step |
Hyp |
Ref |
Expression |
1 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
2 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
3 |
|
divneg |
|- ( ( ( sin ` A ) e. CC /\ ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( sin ` A ) / ( cos ` A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
4 |
2 3
|
syl3an1 |
|- ( ( A e. CC /\ ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( sin ` A ) / ( cos ` A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
5 |
1 4
|
syl3an2 |
|- ( ( A e. CC /\ A e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( sin ` A ) / ( cos ` A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
6 |
5
|
3anidm12 |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( sin ` A ) / ( cos ` A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
7 |
|
tanval |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
8 |
7
|
negeqd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( tan ` A ) = -u ( ( sin ` A ) / ( cos ` A ) ) ) |
9 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
10 |
|
cosneg |
|- ( A e. CC -> ( cos ` -u A ) = ( cos ` A ) ) |
11 |
10
|
adantr |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` -u A ) = ( cos ` A ) ) |
12 |
|
simpr |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) =/= 0 ) |
13 |
11 12
|
eqnetrd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` -u A ) =/= 0 ) |
14 |
|
tanval |
|- ( ( -u A e. CC /\ ( cos ` -u A ) =/= 0 ) -> ( tan ` -u A ) = ( ( sin ` -u A ) / ( cos ` -u A ) ) ) |
15 |
9 13 14
|
syl2an2r |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` -u A ) = ( ( sin ` -u A ) / ( cos ` -u A ) ) ) |
16 |
|
sinneg |
|- ( A e. CC -> ( sin ` -u A ) = -u ( sin ` A ) ) |
17 |
16 10
|
oveq12d |
|- ( A e. CC -> ( ( sin ` -u A ) / ( cos ` -u A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
18 |
17
|
adantr |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` -u A ) / ( cos ` -u A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
19 |
15 18
|
eqtrd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` -u A ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
20 |
6 8 19
|
3eqtr4rd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` -u A ) = -u ( tan ` A ) ) |