| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> A e. CC ) | 
						
							| 2 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 3 | 2 | anim1i |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) ) | 
						
							| 4 |  | eldifsn |  |-  ( ( cos ` A ) e. ( CC \ { 0 } ) <-> ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) ) | 
						
							| 5 | 3 4 | sylibr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) e. ( CC \ { 0 } ) ) | 
						
							| 6 |  | cosf |  |-  cos : CC --> CC | 
						
							| 7 |  | ffn |  |-  ( cos : CC --> CC -> cos Fn CC ) | 
						
							| 8 |  | elpreima |  |-  ( cos Fn CC -> ( A e. ( `' cos " ( CC \ { 0 } ) ) <-> ( A e. CC /\ ( cos ` A ) e. ( CC \ { 0 } ) ) ) ) | 
						
							| 9 | 6 7 8 | mp2b |  |-  ( A e. ( `' cos " ( CC \ { 0 } ) ) <-> ( A e. CC /\ ( cos ` A ) e. ( CC \ { 0 } ) ) ) | 
						
							| 10 | 1 5 9 | sylanbrc |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> A e. ( `' cos " ( CC \ { 0 } ) ) ) | 
						
							| 11 |  | fveq2 |  |-  ( x = A -> ( sin ` x ) = ( sin ` A ) ) | 
						
							| 12 |  | fveq2 |  |-  ( x = A -> ( cos ` x ) = ( cos ` A ) ) | 
						
							| 13 | 11 12 | oveq12d |  |-  ( x = A -> ( ( sin ` x ) / ( cos ` x ) ) = ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 14 |  | df-tan |  |-  tan = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) / ( cos ` x ) ) ) | 
						
							| 15 |  | ovex |  |-  ( ( sin ` A ) / ( cos ` A ) ) e. _V | 
						
							| 16 | 13 14 15 | fvmpt |  |-  ( A e. ( `' cos " ( CC \ { 0 } ) ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 17 | 10 16 | syl |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |