| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tanval |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) | 
						
							| 2 |  | 2cn |  |-  2 e. CC | 
						
							| 3 |  | ax-icn |  |-  _i e. CC | 
						
							| 4 | 2 3 | mulcomi |  |-  ( 2 x. _i ) = ( _i x. 2 ) | 
						
							| 5 | 4 | oveq2i |  |-  ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. 2 ) ) | 
						
							| 6 |  | sinval |  |-  ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) | 
						
							| 8 |  | simpl |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> A e. CC ) | 
						
							| 9 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 10 | 3 8 9 | sylancr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( _i x. A ) e. CC ) | 
						
							| 11 |  | efcl |  |-  ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( exp ` ( _i x. A ) ) e. CC ) | 
						
							| 13 |  | negicn |  |-  -u _i e. CC | 
						
							| 14 |  | mulcl |  |-  ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) | 
						
							| 15 | 13 8 14 | sylancr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( -u _i x. A ) e. CC ) | 
						
							| 16 |  | efcl |  |-  ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( exp ` ( -u _i x. A ) ) e. CC ) | 
						
							| 18 | 12 17 | subcld |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) | 
						
							| 19 | 3 | a1i |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> _i e. CC ) | 
						
							| 20 | 2 | a1i |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> 2 e. CC ) | 
						
							| 21 |  | ine0 |  |-  _i =/= 0 | 
						
							| 22 | 21 | a1i |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> _i =/= 0 ) | 
						
							| 23 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 24 | 23 | a1i |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> 2 =/= 0 ) | 
						
							| 25 | 18 19 20 22 24 | divdiv1d |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. 2 ) ) ) | 
						
							| 26 | 5 7 25 | 3eqtr4a |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sin ` A ) = ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / 2 ) ) | 
						
							| 27 |  | cosval |  |-  ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) | 
						
							| 29 | 26 28 | oveq12d |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) / ( cos ` A ) ) = ( ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / 2 ) / ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) | 
						
							| 30 | 1 29 | eqtrd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / 2 ) / ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) | 
						
							| 31 | 18 19 22 | divcld |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) e. CC ) | 
						
							| 32 | 12 17 | addcld |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) | 
						
							| 33 |  | simpr |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) =/= 0 ) | 
						
							| 34 | 28 33 | eqnetrrd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) =/= 0 ) | 
						
							| 35 | 32 20 24 | diveq0ad |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) = 0 <-> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) = 0 ) ) | 
						
							| 36 | 35 | necon3bid |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) =/= 0 <-> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) =/= 0 ) ) | 
						
							| 37 | 34 36 | mpbid |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) =/= 0 ) | 
						
							| 38 | 31 32 20 37 24 | divcan7d |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / 2 ) / ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) = ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) | 
						
							| 39 | 18 19 32 22 37 | divdiv1d |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) | 
						
							| 40 | 30 38 39 | 3eqtrd |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |