| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn |  |-  _i e. CC | 
						
							| 2 |  | simpl |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> A e. CC ) | 
						
							| 3 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 4 | 1 2 3 | sylancr |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. A ) e. CC ) | 
						
							| 5 |  | efcl |  |-  ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( _i x. A ) ) e. CC ) | 
						
							| 7 |  | negicn |  |-  -u _i e. CC | 
						
							| 8 |  | mulcl |  |-  ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) | 
						
							| 9 | 7 2 8 | sylancr |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( -u _i x. A ) e. CC ) | 
						
							| 10 |  | efcl |  |-  ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( -u _i x. A ) ) e. CC ) | 
						
							| 12 | 6 11 | subcld |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) | 
						
							| 13 | 6 11 | addcld |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) | 
						
							| 14 |  | mulcl |  |-  ( ( _i e. CC /\ ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) -> ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) e. CC ) | 
						
							| 15 | 1 13 14 | sylancr |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) e. CC ) | 
						
							| 16 |  | 2z |  |-  2 e. ZZ | 
						
							| 17 |  | efexp |  |-  ( ( ( _i x. A ) e. CC /\ 2 e. ZZ ) -> ( exp ` ( 2 x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) ^ 2 ) ) | 
						
							| 18 | 4 16 17 | sylancl |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( 2 x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) ^ 2 ) ) | 
						
							| 19 | 6 | sqvald |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) ^ 2 ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) | 
						
							| 20 | 18 19 | eqtrd |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( 2 x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) | 
						
							| 21 |  | mulneg1 |  |-  ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = -u ( _i x. A ) ) | 
						
							| 22 | 1 2 21 | sylancr |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( -u _i x. A ) = -u ( _i x. A ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( -u _i x. A ) ) = ( exp ` -u ( _i x. A ) ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` -u ( _i x. A ) ) ) ) | 
						
							| 25 |  | efcan |  |-  ( ( _i x. A ) e. CC -> ( ( exp ` ( _i x. A ) ) x. ( exp ` -u ( _i x. A ) ) ) = 1 ) | 
						
							| 26 | 4 25 | syl |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` -u ( _i x. A ) ) ) = 1 ) | 
						
							| 27 | 24 26 | eqtr2d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> 1 = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) | 
						
							| 28 | 20 27 | oveq12d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) ) | 
						
							| 29 | 6 6 11 | adddid |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) ) | 
						
							| 30 | 28 29 | eqtr4d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) = ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) = ( _i x. ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) | 
						
							| 32 | 1 | a1i |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> _i e. CC ) | 
						
							| 33 | 32 6 13 | mul12d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) | 
						
							| 34 | 31 33 | eqtrd |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) = ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) | 
						
							| 35 |  | 2cn |  |-  2 e. CC | 
						
							| 36 |  | mulcl |  |-  ( ( 2 e. CC /\ ( _i x. A ) e. CC ) -> ( 2 x. ( _i x. A ) ) e. CC ) | 
						
							| 37 | 35 4 36 | sylancr |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( 2 x. ( _i x. A ) ) e. CC ) | 
						
							| 38 |  | efcl |  |-  ( ( 2 x. ( _i x. A ) ) e. CC -> ( exp ` ( 2 x. ( _i x. A ) ) ) e. CC ) | 
						
							| 39 | 37 38 | syl |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( 2 x. ( _i x. A ) ) ) e. CC ) | 
						
							| 40 |  | ax-1cn |  |-  1 e. CC | 
						
							| 41 |  | addcl |  |-  ( ( ( exp ` ( 2 x. ( _i x. A ) ) ) e. CC /\ 1 e. CC ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) e. CC ) | 
						
							| 42 | 39 40 41 | sylancl |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) e. CC ) | 
						
							| 43 |  | ine0 |  |-  _i =/= 0 | 
						
							| 44 | 43 | a1i |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> _i =/= 0 ) | 
						
							| 45 |  | simpr |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) | 
						
							| 46 | 32 42 44 45 | mulne0d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) =/= 0 ) | 
						
							| 47 | 34 46 | eqnetrrd |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) =/= 0 ) | 
						
							| 48 | 6 15 47 | mulne0bbd |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) =/= 0 ) | 
						
							| 49 |  | efne0 |  |-  ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) =/= 0 ) | 
						
							| 50 | 4 49 | syl |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( _i x. A ) ) =/= 0 ) | 
						
							| 51 | 12 15 6 48 50 | divcan5d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) | 
						
							| 52 | 20 27 | oveq12d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) ) | 
						
							| 53 | 6 6 11 | subdid |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) ) | 
						
							| 54 | 52 53 | eqtr4d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) = ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) ) | 
						
							| 55 | 54 34 | oveq12d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) ) | 
						
							| 56 |  | cosval |  |-  ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) | 
						
							| 58 |  | 2cnd |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> 2 e. CC ) | 
						
							| 59 | 32 13 48 | mulne0bbd |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) =/= 0 ) | 
						
							| 60 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 61 | 60 | a1i |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> 2 =/= 0 ) | 
						
							| 62 | 13 58 59 61 | divne0d |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) =/= 0 ) | 
						
							| 63 | 57 62 | eqnetrd |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( cos ` A ) =/= 0 ) | 
						
							| 64 |  | tanval2 |  |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) | 
						
							| 65 | 63 64 | syldan |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) | 
						
							| 66 | 51 55 65 | 3eqtr4rd |  |-  ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) ) ) |