Step |
Hyp |
Ref |
Expression |
1 |
|
taylfval.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
taylfval.f |
|- ( ph -> F : A --> CC ) |
3 |
|
taylfval.a |
|- ( ph -> A C_ S ) |
4 |
|
taylfval.n |
|- ( ph -> ( N e. NN0 \/ N = +oo ) ) |
5 |
|
taylfval.b |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
6 |
|
taylfval.t |
|- T = ( N ( S Tayl F ) B ) |
7 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
8 |
1 7
|
syl |
|- ( ph -> S C_ CC ) |
9 |
3 8
|
sstrd |
|- ( ph -> A C_ CC ) |
10 |
|
fveq2 |
|- ( k = 0 -> ( ( S Dn F ) ` k ) = ( ( S Dn F ) ` 0 ) ) |
11 |
10
|
dmeqd |
|- ( k = 0 -> dom ( ( S Dn F ) ` k ) = dom ( ( S Dn F ) ` 0 ) ) |
12 |
11
|
eleq2d |
|- ( k = 0 -> ( B e. dom ( ( S Dn F ) ` k ) <-> B e. dom ( ( S Dn F ) ` 0 ) ) ) |
13 |
5
|
ralrimiva |
|- ( ph -> A. k e. ( ( 0 [,] N ) i^i ZZ ) B e. dom ( ( S Dn F ) ` k ) ) |
14 |
|
elxnn0 |
|- ( N e. NN0* <-> ( N e. NN0 \/ N = +oo ) ) |
15 |
|
0xr |
|- 0 e. RR* |
16 |
15
|
a1i |
|- ( N e. NN0* -> 0 e. RR* ) |
17 |
|
xnn0xr |
|- ( N e. NN0* -> N e. RR* ) |
18 |
|
xnn0ge0 |
|- ( N e. NN0* -> 0 <_ N ) |
19 |
|
lbicc2 |
|- ( ( 0 e. RR* /\ N e. RR* /\ 0 <_ N ) -> 0 e. ( 0 [,] N ) ) |
20 |
16 17 18 19
|
syl3anc |
|- ( N e. NN0* -> 0 e. ( 0 [,] N ) ) |
21 |
14 20
|
sylbir |
|- ( ( N e. NN0 \/ N = +oo ) -> 0 e. ( 0 [,] N ) ) |
22 |
4 21
|
syl |
|- ( ph -> 0 e. ( 0 [,] N ) ) |
23 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
24 |
22 23
|
elind |
|- ( ph -> 0 e. ( ( 0 [,] N ) i^i ZZ ) ) |
25 |
12 13 24
|
rspcdva |
|- ( ph -> B e. dom ( ( S Dn F ) ` 0 ) ) |
26 |
|
cnex |
|- CC e. _V |
27 |
26
|
a1i |
|- ( ph -> CC e. _V ) |
28 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
29 |
27 1 2 3 28
|
syl22anc |
|- ( ph -> F e. ( CC ^pm S ) ) |
30 |
|
dvn0 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) |
31 |
8 29 30
|
syl2anc |
|- ( ph -> ( ( S Dn F ) ` 0 ) = F ) |
32 |
31
|
dmeqd |
|- ( ph -> dom ( ( S Dn F ) ` 0 ) = dom F ) |
33 |
2
|
fdmd |
|- ( ph -> dom F = A ) |
34 |
32 33
|
eqtrd |
|- ( ph -> dom ( ( S Dn F ) ` 0 ) = A ) |
35 |
25 34
|
eleqtrd |
|- ( ph -> B e. A ) |
36 |
9 35
|
sseldd |
|- ( ph -> B e. CC ) |
37 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
38 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
39 |
|
cnring |
|- CCfld e. Ring |
40 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
41 |
39 40
|
mp1i |
|- ( ph -> CCfld e. Mnd ) |
42 |
|
ovex |
|- ( 0 [,] N ) e. _V |
43 |
42
|
inex1 |
|- ( ( 0 [,] N ) i^i ZZ ) e. _V |
44 |
43
|
a1i |
|- ( ph -> ( ( 0 [,] N ) i^i ZZ ) e. _V ) |
45 |
1
|
adantr |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> S e. { RR , CC } ) |
46 |
29
|
adantr |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> F e. ( CC ^pm S ) ) |
47 |
|
simpr |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ( ( 0 [,] N ) i^i ZZ ) ) |
48 |
47
|
elin2d |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ZZ ) |
49 |
47
|
elin1d |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ( 0 [,] N ) ) |
50 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
51 |
50
|
rexrd |
|- ( N e. NN0 -> N e. RR* ) |
52 |
|
id |
|- ( N = +oo -> N = +oo ) |
53 |
|
pnfxr |
|- +oo e. RR* |
54 |
52 53
|
eqeltrdi |
|- ( N = +oo -> N e. RR* ) |
55 |
51 54
|
jaoi |
|- ( ( N e. NN0 \/ N = +oo ) -> N e. RR* ) |
56 |
4 55
|
syl |
|- ( ph -> N e. RR* ) |
57 |
56
|
adantr |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> N e. RR* ) |
58 |
|
elicc1 |
|- ( ( 0 e. RR* /\ N e. RR* ) -> ( k e. ( 0 [,] N ) <-> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) ) |
59 |
15 57 58
|
sylancr |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( k e. ( 0 [,] N ) <-> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) ) |
60 |
49 59
|
mpbid |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) |
61 |
60
|
simp2d |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> 0 <_ k ) |
62 |
|
elnn0z |
|- ( k e. NN0 <-> ( k e. ZZ /\ 0 <_ k ) ) |
63 |
48 61 62
|
sylanbrc |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. NN0 ) |
64 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
65 |
45 46 63 64
|
syl3anc |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
66 |
65 5
|
ffvelrnd |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) |
67 |
63
|
faccld |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) e. NN ) |
68 |
67
|
nncnd |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) e. CC ) |
69 |
67
|
nnne0d |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) =/= 0 ) |
70 |
66 68 69
|
divcld |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
71 |
|
0cnd |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> 0 e. CC ) |
72 |
71 63
|
expcld |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( 0 ^ k ) e. CC ) |
73 |
70 72
|
mulcld |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) e. CC ) |
74 |
73
|
fmpttd |
|- ( ph -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) : ( ( 0 [,] N ) i^i ZZ ) --> CC ) |
75 |
|
eldifi |
|- ( k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) -> k e. ( ( 0 [,] N ) i^i ZZ ) ) |
76 |
75 63
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> k e. NN0 ) |
77 |
|
eldifsni |
|- ( k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) -> k =/= 0 ) |
78 |
77
|
adantl |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> k =/= 0 ) |
79 |
|
elnnne0 |
|- ( k e. NN <-> ( k e. NN0 /\ k =/= 0 ) ) |
80 |
76 78 79
|
sylanbrc |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> k e. NN ) |
81 |
80
|
0expd |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> ( 0 ^ k ) = 0 ) |
82 |
81
|
oveq2d |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) ) |
83 |
70
|
mul01d |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) = 0 ) |
84 |
75 83
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) = 0 ) |
85 |
82 84
|
eqtrd |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) = 0 ) |
86 |
|
zex |
|- ZZ e. _V |
87 |
86
|
inex2 |
|- ( ( 0 [,] N ) i^i ZZ ) e. _V |
88 |
87
|
a1i |
|- ( ph -> ( ( 0 [,] N ) i^i ZZ ) e. _V ) |
89 |
85 88
|
suppss2 |
|- ( ph -> ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) supp 0 ) C_ { 0 } ) |
90 |
37 38 41 44 24 74 89
|
gsumpt |
|- ( ph -> ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) = ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ` 0 ) ) |
91 |
10
|
fveq1d |
|- ( k = 0 -> ( ( ( S Dn F ) ` k ) ` B ) = ( ( ( S Dn F ) ` 0 ) ` B ) ) |
92 |
|
fveq2 |
|- ( k = 0 -> ( ! ` k ) = ( ! ` 0 ) ) |
93 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
94 |
92 93
|
eqtrdi |
|- ( k = 0 -> ( ! ` k ) = 1 ) |
95 |
91 94
|
oveq12d |
|- ( k = 0 -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) = ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) ) |
96 |
|
oveq2 |
|- ( k = 0 -> ( 0 ^ k ) = ( 0 ^ 0 ) ) |
97 |
|
0exp0e1 |
|- ( 0 ^ 0 ) = 1 |
98 |
96 97
|
eqtrdi |
|- ( k = 0 -> ( 0 ^ k ) = 1 ) |
99 |
95 98
|
oveq12d |
|- ( k = 0 -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) = ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) ) |
100 |
|
eqid |
|- ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) = ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) |
101 |
|
ovex |
|- ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) e. _V |
102 |
99 100 101
|
fvmpt |
|- ( 0 e. ( ( 0 [,] N ) i^i ZZ ) -> ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ` 0 ) = ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) ) |
103 |
24 102
|
syl |
|- ( ph -> ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ` 0 ) = ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) ) |
104 |
31
|
fveq1d |
|- ( ph -> ( ( ( S Dn F ) ` 0 ) ` B ) = ( F ` B ) ) |
105 |
104
|
oveq1d |
|- ( ph -> ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) = ( ( F ` B ) / 1 ) ) |
106 |
2 35
|
ffvelrnd |
|- ( ph -> ( F ` B ) e. CC ) |
107 |
106
|
div1d |
|- ( ph -> ( ( F ` B ) / 1 ) = ( F ` B ) ) |
108 |
105 107
|
eqtrd |
|- ( ph -> ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) = ( F ` B ) ) |
109 |
108
|
oveq1d |
|- ( ph -> ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) = ( ( F ` B ) x. 1 ) ) |
110 |
106
|
mulid1d |
|- ( ph -> ( ( F ` B ) x. 1 ) = ( F ` B ) ) |
111 |
109 110
|
eqtrd |
|- ( ph -> ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) = ( F ` B ) ) |
112 |
90 103 111
|
3eqtrd |
|- ( ph -> ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) = ( F ` B ) ) |
113 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
114 |
39 113
|
mp1i |
|- ( ph -> CCfld e. CMnd ) |
115 |
|
cnfldtps |
|- CCfld e. TopSp |
116 |
115
|
a1i |
|- ( ph -> CCfld e. TopSp ) |
117 |
|
mptexg |
|- ( ( ( 0 [,] N ) i^i ZZ ) e. _V -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) e. _V ) |
118 |
87 117
|
mp1i |
|- ( ph -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) e. _V ) |
119 |
|
funmpt |
|- Fun ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) |
120 |
119
|
a1i |
|- ( ph -> Fun ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) |
121 |
|
c0ex |
|- 0 e. _V |
122 |
121
|
a1i |
|- ( ph -> 0 e. _V ) |
123 |
|
snfi |
|- { 0 } e. Fin |
124 |
123
|
a1i |
|- ( ph -> { 0 } e. Fin ) |
125 |
|
suppssfifsupp |
|- ( ( ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) e. _V /\ Fun ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) /\ 0 e. _V ) /\ ( { 0 } e. Fin /\ ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) supp 0 ) C_ { 0 } ) ) -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) finSupp 0 ) |
126 |
118 120 122 124 89 125
|
syl32anc |
|- ( ph -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) finSupp 0 ) |
127 |
37 38 114 116 44 74 126
|
tsmsid |
|- ( ph -> ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) ) |
128 |
112 127
|
eqeltrrd |
|- ( ph -> ( F ` B ) e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) ) |
129 |
36
|
subidd |
|- ( ph -> ( B - B ) = 0 ) |
130 |
129
|
oveq1d |
|- ( ph -> ( ( B - B ) ^ k ) = ( 0 ^ k ) ) |
131 |
130
|
oveq2d |
|- ( ph -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) |
132 |
131
|
mpteq2dv |
|- ( ph -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) ) = ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) |
133 |
132
|
oveq2d |
|- ( ph -> ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) ) ) = ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) ) |
134 |
128 133
|
eleqtrrd |
|- ( ph -> ( F ` B ) e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) ) ) ) |
135 |
1 2 3 4 5 6
|
eltayl |
|- ( ph -> ( B T ( F ` B ) <-> ( B e. CC /\ ( F ` B ) e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) ) ) ) ) ) |
136 |
36 134 135
|
mpbir2and |
|- ( ph -> B T ( F ` B ) ) |
137 |
1 2 3 4 5 6
|
taylf |
|- ( ph -> T : dom T --> CC ) |
138 |
|
ffun |
|- ( T : dom T --> CC -> Fun T ) |
139 |
|
funbrfv2b |
|- ( Fun T -> ( B T ( F ` B ) <-> ( B e. dom T /\ ( T ` B ) = ( F ` B ) ) ) ) |
140 |
137 138 139
|
3syl |
|- ( ph -> ( B T ( F ` B ) <-> ( B e. dom T /\ ( T ` B ) = ( F ` B ) ) ) ) |
141 |
136 140
|
mpbid |
|- ( ph -> ( B e. dom T /\ ( T ` B ) = ( F ` B ) ) ) |