Step |
Hyp |
Ref |
Expression |
1 |
|
taylfval.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
taylfval.f |
|- ( ph -> F : A --> CC ) |
3 |
|
taylfval.a |
|- ( ph -> A C_ S ) |
4 |
|
taylfval.n |
|- ( ph -> ( N e. NN0 \/ N = +oo ) ) |
5 |
|
taylfval.b |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
6 |
|
taylfval.t |
|- T = ( N ( S Tayl F ) B ) |
7 |
1 2 3 4 5 6
|
taylfval |
|- ( ph -> T = U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) |
8 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
9 |
8
|
snssd |
|- ( ( ph /\ x e. CC ) -> { x } C_ CC ) |
10 |
1 2 3 4 5
|
taylfvallem |
|- ( ( ph /\ x e. CC ) -> ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) C_ CC ) |
11 |
|
xpss12 |
|- ( ( { x } C_ CC /\ ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) C_ CC ) -> ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) ) |
12 |
9 10 11
|
syl2anc |
|- ( ( ph /\ x e. CC ) -> ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) ) |
13 |
12
|
ralrimiva |
|- ( ph -> A. x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) ) |
14 |
|
iunss |
|- ( U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) <-> A. x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) ) |
15 |
13 14
|
sylibr |
|- ( ph -> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) ) |
16 |
7 15
|
eqsstrd |
|- ( ph -> T C_ ( CC X. CC ) ) |
17 |
|
relxp |
|- Rel ( CC X. CC ) |
18 |
|
relss |
|- ( T C_ ( CC X. CC ) -> ( Rel ( CC X. CC ) -> Rel T ) ) |
19 |
16 17 18
|
mpisyl |
|- ( ph -> Rel T ) |
20 |
1 2 3 4 5 6
|
eltayl |
|- ( ph -> ( x T y <-> ( x e. CC /\ y e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) ) |
21 |
20
|
biimpd |
|- ( ph -> ( x T y -> ( x e. CC /\ y e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) ) |
22 |
21
|
alrimiv |
|- ( ph -> A. y ( x T y -> ( x e. CC /\ y e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) ) |
23 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
24 |
|
cnring |
|- CCfld e. Ring |
25 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
26 |
24 25
|
mp1i |
|- ( ( ph /\ x e. CC ) -> CCfld e. CMnd ) |
27 |
|
cnfldtps |
|- CCfld e. TopSp |
28 |
27
|
a1i |
|- ( ( ph /\ x e. CC ) -> CCfld e. TopSp ) |
29 |
|
ovex |
|- ( 0 [,] N ) e. _V |
30 |
29
|
inex1 |
|- ( ( 0 [,] N ) i^i ZZ ) e. _V |
31 |
30
|
a1i |
|- ( ( ph /\ x e. CC ) -> ( ( 0 [,] N ) i^i ZZ ) e. _V ) |
32 |
1 2 3 4 5
|
taylfvallem1 |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) e. CC ) |
33 |
32
|
fmpttd |
|- ( ( ph /\ x e. CC ) -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) : ( ( 0 [,] N ) i^i ZZ ) --> CC ) |
34 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
35 |
34
|
cnfldhaus |
|- ( TopOpen ` CCfld ) e. Haus |
36 |
35
|
a1i |
|- ( ( ph /\ x e. CC ) -> ( TopOpen ` CCfld ) e. Haus ) |
37 |
23 26 28 31 33 34 36
|
haustsms |
|- ( ( ph /\ x e. CC ) -> E* y y e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) |
38 |
37
|
ex |
|- ( ph -> ( x e. CC -> E* y y e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) |
39 |
|
moanimv |
|- ( E* y ( x e. CC /\ y e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) <-> ( x e. CC -> E* y y e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) |
40 |
38 39
|
sylibr |
|- ( ph -> E* y ( x e. CC /\ y e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) |
41 |
|
moim |
|- ( A. y ( x T y -> ( x e. CC /\ y e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) -> ( E* y ( x e. CC /\ y e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) -> E* y x T y ) ) |
42 |
22 40 41
|
sylc |
|- ( ph -> E* y x T y ) |
43 |
42
|
alrimiv |
|- ( ph -> A. x E* y x T y ) |
44 |
|
dffun6 |
|- ( Fun T <-> ( Rel T /\ A. x E* y x T y ) ) |
45 |
19 43 44
|
sylanbrc |
|- ( ph -> Fun T ) |
46 |
45
|
funfnd |
|- ( ph -> T Fn dom T ) |
47 |
|
rnss |
|- ( T C_ ( CC X. CC ) -> ran T C_ ran ( CC X. CC ) ) |
48 |
16 47
|
syl |
|- ( ph -> ran T C_ ran ( CC X. CC ) ) |
49 |
|
rnxpss |
|- ran ( CC X. CC ) C_ CC |
50 |
48 49
|
sstrdi |
|- ( ph -> ran T C_ CC ) |
51 |
|
df-f |
|- ( T : dom T --> CC <-> ( T Fn dom T /\ ran T C_ CC ) ) |
52 |
46 50 51
|
sylanbrc |
|- ( ph -> T : dom T --> CC ) |