Step |
Hyp |
Ref |
Expression |
1 |
|
taylfval.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
taylfval.f |
|- ( ph -> F : A --> CC ) |
3 |
|
taylfval.a |
|- ( ph -> A C_ S ) |
4 |
|
taylfval.n |
|- ( ph -> ( N e. NN0 \/ N = +oo ) ) |
5 |
|
taylfval.b |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
6 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
7 |
|
cnring |
|- CCfld e. Ring |
8 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
9 |
7 8
|
mp1i |
|- ( ( ph /\ X e. CC ) -> CCfld e. CMnd ) |
10 |
|
cnfldtps |
|- CCfld e. TopSp |
11 |
10
|
a1i |
|- ( ( ph /\ X e. CC ) -> CCfld e. TopSp ) |
12 |
|
ovex |
|- ( 0 [,] N ) e. _V |
13 |
12
|
inex1 |
|- ( ( 0 [,] N ) i^i ZZ ) e. _V |
14 |
13
|
a1i |
|- ( ( ph /\ X e. CC ) -> ( ( 0 [,] N ) i^i ZZ ) e. _V ) |
15 |
1 2 3 4 5
|
taylfvallem1 |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. CC ) |
16 |
15
|
fmpttd |
|- ( ( ph /\ X e. CC ) -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) : ( ( 0 [,] N ) i^i ZZ ) --> CC ) |
17 |
6 9 11 14 16
|
tsmscl |
|- ( ( ph /\ X e. CC ) -> ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) ) C_ CC ) |