| Step |
Hyp |
Ref |
Expression |
| 1 |
|
taylpfval.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
taylpfval.f |
|- ( ph -> F : A --> CC ) |
| 3 |
|
taylpfval.a |
|- ( ph -> A C_ S ) |
| 4 |
|
taylpfval.n |
|- ( ph -> N e. NN0 ) |
| 5 |
|
taylpfval.b |
|- ( ph -> B e. dom ( ( S Dn F ) ` N ) ) |
| 6 |
|
taylpfval.t |
|- T = ( N ( S Tayl F ) B ) |
| 7 |
1 2 3 4 5 6
|
taylpfval |
|- ( ph -> T = ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) |
| 8 |
|
fzfid |
|- ( ( ph /\ x e. CC ) -> ( 0 ... N ) e. Fin ) |
| 9 |
1 2 3 4 5
|
taylplem2 |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) e. CC ) |
| 10 |
8 9
|
fsumcl |
|- ( ( ph /\ x e. CC ) -> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) e. CC ) |
| 11 |
7 10
|
fmpt3d |
|- ( ph -> T : CC --> CC ) |