| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							taylpfval.s | 
							 |-  ( ph -> S e. { RR , CC } ) | 
						
						
							| 2 | 
							
								
							 | 
							taylpfval.f | 
							 |-  ( ph -> F : A --> CC )  | 
						
						
							| 3 | 
							
								
							 | 
							taylpfval.a | 
							 |-  ( ph -> A C_ S )  | 
						
						
							| 4 | 
							
								
							 | 
							taylpfval.n | 
							 |-  ( ph -> N e. NN0 )  | 
						
						
							| 5 | 
							
								
							 | 
							taylpfval.b | 
							 |-  ( ph -> B e. dom ( ( S Dn F ) ` N ) )  | 
						
						
							| 6 | 
							
								
							 | 
							0z | 
							 |-  0 e. ZZ  | 
						
						
							| 7 | 
							
								4
							 | 
							nn0zd | 
							 |-  ( ph -> N e. ZZ )  | 
						
						
							| 8 | 
							
								
							 | 
							fzval2 | 
							 |-  ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 ... N ) = ( ( 0 [,] N ) i^i ZZ ) )  | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							sylancr | 
							 |-  ( ph -> ( 0 ... N ) = ( ( 0 [,] N ) i^i ZZ ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eleq2d | 
							 |-  ( ph -> ( k e. ( 0 ... N ) <-> k e. ( ( 0 [,] N ) i^i ZZ ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ph /\ X e. CC ) -> ( k e. ( 0 ... N ) <-> k e. ( ( 0 [,] N ) i^i ZZ ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							biimpa | 
							 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> k e. ( ( 0 [,] N ) i^i ZZ ) )  | 
						
						
							| 13 | 
							
								4
							 | 
							orcd | 
							 |-  ( ph -> ( N e. NN0 \/ N = +oo ) )  | 
						
						
							| 14 | 
							
								1 2 3 4 5
							 | 
							taylplem1 | 
							 |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) )  | 
						
						
							| 15 | 
							
								1 2 3 13 14
							 | 
							taylfvallem1 | 
							 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. CC )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							syldan | 
							 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. CC )  |