Step |
Hyp |
Ref |
Expression |
1 |
|
taylpfval.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
taylpfval.f |
|- ( ph -> F : A --> CC ) |
3 |
|
taylpfval.a |
|- ( ph -> A C_ S ) |
4 |
|
taylpfval.n |
|- ( ph -> N e. NN0 ) |
5 |
|
taylpfval.b |
|- ( ph -> B e. dom ( ( S Dn F ) ` N ) ) |
6 |
|
0z |
|- 0 e. ZZ |
7 |
4
|
nn0zd |
|- ( ph -> N e. ZZ ) |
8 |
|
fzval2 |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 ... N ) = ( ( 0 [,] N ) i^i ZZ ) ) |
9 |
6 7 8
|
sylancr |
|- ( ph -> ( 0 ... N ) = ( ( 0 [,] N ) i^i ZZ ) ) |
10 |
9
|
eleq2d |
|- ( ph -> ( k e. ( 0 ... N ) <-> k e. ( ( 0 [,] N ) i^i ZZ ) ) ) |
11 |
10
|
adantr |
|- ( ( ph /\ X e. CC ) -> ( k e. ( 0 ... N ) <-> k e. ( ( 0 [,] N ) i^i ZZ ) ) ) |
12 |
11
|
biimpa |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> k e. ( ( 0 [,] N ) i^i ZZ ) ) |
13 |
4
|
orcd |
|- ( ph -> ( N e. NN0 \/ N = +oo ) ) |
14 |
1 2 3 4 5
|
taylplem1 |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
15 |
1 2 3 13 14
|
taylfvallem1 |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. CC ) |
16 |
12 15
|
syldan |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. CC ) |