Step |
Hyp |
Ref |
Expression |
1 |
|
taylpfval.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
taylpfval.f |
|- ( ph -> F : A --> CC ) |
3 |
|
taylpfval.a |
|- ( ph -> A C_ S ) |
4 |
|
taylpfval.n |
|- ( ph -> N e. NN0 ) |
5 |
|
taylpfval.b |
|- ( ph -> B e. dom ( ( S Dn F ) ` N ) ) |
6 |
|
taylpfval.t |
|- T = ( N ( S Tayl F ) B ) |
7 |
|
taylply2.1 |
|- ( ph -> D e. ( SubRing ` CCfld ) ) |
8 |
|
taylply2.2 |
|- ( ph -> B e. D ) |
9 |
|
taylply2.3 |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. D ) |
10 |
1 2 3 4 5 6
|
taylpfval |
|- ( ph -> T = ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) |
11 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
12 |
|
cnex |
|- CC e. _V |
13 |
12
|
a1i |
|- ( ph -> CC e. _V ) |
14 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
15 |
13 1 2 3 14
|
syl22anc |
|- ( ph -> F e. ( CC ^pm S ) ) |
16 |
|
dvnbss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> dom ( ( S Dn F ) ` N ) C_ dom F ) |
17 |
1 15 4 16
|
syl3anc |
|- ( ph -> dom ( ( S Dn F ) ` N ) C_ dom F ) |
18 |
2 17
|
fssdmd |
|- ( ph -> dom ( ( S Dn F ) ` N ) C_ A ) |
19 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
20 |
1 19
|
syl |
|- ( ph -> S C_ CC ) |
21 |
3 20
|
sstrd |
|- ( ph -> A C_ CC ) |
22 |
18 21
|
sstrd |
|- ( ph -> dom ( ( S Dn F ) ` N ) C_ CC ) |
23 |
22 5
|
sseldd |
|- ( ph -> B e. CC ) |
24 |
23
|
adantr |
|- ( ( ph /\ x e. CC ) -> B e. CC ) |
25 |
11 24
|
subcld |
|- ( ( ph /\ x e. CC ) -> ( x - B ) e. CC ) |
26 |
|
df-idp |
|- Xp = ( _I |` CC ) |
27 |
|
mptresid |
|- ( _I |` CC ) = ( x e. CC |-> x ) |
28 |
26 27
|
eqtri |
|- Xp = ( x e. CC |-> x ) |
29 |
28
|
a1i |
|- ( ph -> Xp = ( x e. CC |-> x ) ) |
30 |
|
fconstmpt |
|- ( CC X. { B } ) = ( x e. CC |-> B ) |
31 |
30
|
a1i |
|- ( ph -> ( CC X. { B } ) = ( x e. CC |-> B ) ) |
32 |
13 11 24 29 31
|
offval2 |
|- ( ph -> ( Xp oF - ( CC X. { B } ) ) = ( x e. CC |-> ( x - B ) ) ) |
33 |
|
eqidd |
|- ( ph -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) = ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) |
34 |
|
oveq1 |
|- ( y = ( x - B ) -> ( y ^ k ) = ( ( x - B ) ^ k ) ) |
35 |
34
|
oveq2d |
|- ( y = ( x - B ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) |
36 |
35
|
sumeq2sdv |
|- ( y = ( x - B ) -> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) |
37 |
25 32 33 36
|
fmptco |
|- ( ph -> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) = ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) |
38 |
10 37
|
eqtr4d |
|- ( ph -> T = ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) ) |
39 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
40 |
39
|
subrgss |
|- ( D e. ( SubRing ` CCfld ) -> D C_ CC ) |
41 |
7 40
|
syl |
|- ( ph -> D C_ CC ) |
42 |
41 4 9
|
elplyd |
|- ( ph -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) e. ( Poly ` D ) ) |
43 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
44 |
43
|
subrg1cl |
|- ( D e. ( SubRing ` CCfld ) -> 1 e. D ) |
45 |
7 44
|
syl |
|- ( ph -> 1 e. D ) |
46 |
|
plyid |
|- ( ( D C_ CC /\ 1 e. D ) -> Xp e. ( Poly ` D ) ) |
47 |
41 45 46
|
syl2anc |
|- ( ph -> Xp e. ( Poly ` D ) ) |
48 |
|
plyconst |
|- ( ( D C_ CC /\ B e. D ) -> ( CC X. { B } ) e. ( Poly ` D ) ) |
49 |
41 8 48
|
syl2anc |
|- ( ph -> ( CC X. { B } ) e. ( Poly ` D ) ) |
50 |
|
subrgsubg |
|- ( D e. ( SubRing ` CCfld ) -> D e. ( SubGrp ` CCfld ) ) |
51 |
7 50
|
syl |
|- ( ph -> D e. ( SubGrp ` CCfld ) ) |
52 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
53 |
52
|
subgcl |
|- ( ( D e. ( SubGrp ` CCfld ) /\ u e. D /\ v e. D ) -> ( u + v ) e. D ) |
54 |
53
|
3expb |
|- ( ( D e. ( SubGrp ` CCfld ) /\ ( u e. D /\ v e. D ) ) -> ( u + v ) e. D ) |
55 |
51 54
|
sylan |
|- ( ( ph /\ ( u e. D /\ v e. D ) ) -> ( u + v ) e. D ) |
56 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
57 |
56
|
subrgmcl |
|- ( ( D e. ( SubRing ` CCfld ) /\ u e. D /\ v e. D ) -> ( u x. v ) e. D ) |
58 |
57
|
3expb |
|- ( ( D e. ( SubRing ` CCfld ) /\ ( u e. D /\ v e. D ) ) -> ( u x. v ) e. D ) |
59 |
7 58
|
sylan |
|- ( ( ph /\ ( u e. D /\ v e. D ) ) -> ( u x. v ) e. D ) |
60 |
|
ax-1cn |
|- 1 e. CC |
61 |
|
cnfldneg |
|- ( 1 e. CC -> ( ( invg ` CCfld ) ` 1 ) = -u 1 ) |
62 |
60 61
|
ax-mp |
|- ( ( invg ` CCfld ) ` 1 ) = -u 1 |
63 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
64 |
63
|
subginvcl |
|- ( ( D e. ( SubGrp ` CCfld ) /\ 1 e. D ) -> ( ( invg ` CCfld ) ` 1 ) e. D ) |
65 |
51 45 64
|
syl2anc |
|- ( ph -> ( ( invg ` CCfld ) ` 1 ) e. D ) |
66 |
62 65
|
eqeltrrid |
|- ( ph -> -u 1 e. D ) |
67 |
47 49 55 59 66
|
plysub |
|- ( ph -> ( Xp oF - ( CC X. { B } ) ) e. ( Poly ` D ) ) |
68 |
42 67 55 59
|
plyco |
|- ( ph -> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) e. ( Poly ` D ) ) |
69 |
38 68
|
eqeltrd |
|- ( ph -> T e. ( Poly ` D ) ) |
70 |
38
|
fveq2d |
|- ( ph -> ( deg ` T ) = ( deg ` ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) ) ) |
71 |
|
eqid |
|- ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) = ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) |
72 |
|
eqid |
|- ( deg ` ( Xp oF - ( CC X. { B } ) ) ) = ( deg ` ( Xp oF - ( CC X. { B } ) ) ) |
73 |
71 72 42 67
|
dgrco |
|- ( ph -> ( deg ` ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) ) = ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. ( deg ` ( Xp oF - ( CC X. { B } ) ) ) ) ) |
74 |
|
eqid |
|- ( Xp oF - ( CC X. { B } ) ) = ( Xp oF - ( CC X. { B } ) ) |
75 |
74
|
plyremlem |
|- ( B e. CC -> ( ( Xp oF - ( CC X. { B } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { B } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { B } ) ) " { 0 } ) = { B } ) ) |
76 |
23 75
|
syl |
|- ( ph -> ( ( Xp oF - ( CC X. { B } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { B } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { B } ) ) " { 0 } ) = { B } ) ) |
77 |
76
|
simp2d |
|- ( ph -> ( deg ` ( Xp oF - ( CC X. { B } ) ) ) = 1 ) |
78 |
77
|
oveq2d |
|- ( ph -> ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. ( deg ` ( Xp oF - ( CC X. { B } ) ) ) ) = ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. 1 ) ) |
79 |
|
dgrcl |
|- ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) e. ( Poly ` D ) -> ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) e. NN0 ) |
80 |
42 79
|
syl |
|- ( ph -> ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) e. NN0 ) |
81 |
80
|
nn0cnd |
|- ( ph -> ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) e. CC ) |
82 |
81
|
mulid1d |
|- ( ph -> ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. 1 ) = ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) ) |
83 |
78 82
|
eqtrd |
|- ( ph -> ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. ( deg ` ( Xp oF - ( CC X. { B } ) ) ) ) = ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) ) |
84 |
70 73 83
|
3eqtrd |
|- ( ph -> ( deg ` T ) = ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) ) |
85 |
1
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> S e. { RR , CC } ) |
86 |
15
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> F e. ( CC ^pm S ) ) |
87 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
88 |
87
|
adantl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
89 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
90 |
85 86 88 89
|
syl3anc |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
91 |
|
simpr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. ( 0 ... N ) ) |
92 |
|
dvn2bss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` k ) ) |
93 |
85 86 91 92
|
syl3anc |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` k ) ) |
94 |
5
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( S Dn F ) ` N ) ) |
95 |
93 94
|
sseldd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
96 |
90 95
|
ffvelrnd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) |
97 |
88
|
faccld |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. NN ) |
98 |
97
|
nncnd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. CC ) |
99 |
97
|
nnne0d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) =/= 0 ) |
100 |
96 98 99
|
divcld |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
101 |
42 4 100 33
|
dgrle |
|- ( ph -> ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) <_ N ) |
102 |
84 101
|
eqbrtrd |
|- ( ph -> ( deg ` T ) <_ N ) |
103 |
69 102
|
jca |
|- ( ph -> ( T e. ( Poly ` D ) /\ ( deg ` T ) <_ N ) ) |