| Step |
Hyp |
Ref |
Expression |
| 1 |
|
taylpfval.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
taylpfval.f |
|- ( ph -> F : A --> CC ) |
| 3 |
|
taylpfval.a |
|- ( ph -> A C_ S ) |
| 4 |
|
taylpfval.n |
|- ( ph -> N e. NN0 ) |
| 5 |
|
taylpfval.b |
|- ( ph -> B e. dom ( ( S Dn F ) ` N ) ) |
| 6 |
|
taylpfval.t |
|- T = ( N ( S Tayl F ) B ) |
| 7 |
|
taylply2.1 |
|- ( ph -> D e. ( SubRing ` CCfld ) ) |
| 8 |
|
taylply2.2 |
|- ( ph -> B e. D ) |
| 9 |
|
taylply2.3 |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. D ) |
| 10 |
1 2 3 4 5 6
|
taylpfval |
|- ( ph -> T = ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
| 12 |
|
cnex |
|- CC e. _V |
| 13 |
12
|
a1i |
|- ( ph -> CC e. _V ) |
| 14 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
| 15 |
13 1 2 3 14
|
syl22anc |
|- ( ph -> F e. ( CC ^pm S ) ) |
| 16 |
|
dvnbss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> dom ( ( S Dn F ) ` N ) C_ dom F ) |
| 17 |
1 15 4 16
|
syl3anc |
|- ( ph -> dom ( ( S Dn F ) ` N ) C_ dom F ) |
| 18 |
2 17
|
fssdmd |
|- ( ph -> dom ( ( S Dn F ) ` N ) C_ A ) |
| 19 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 20 |
1 19
|
syl |
|- ( ph -> S C_ CC ) |
| 21 |
3 20
|
sstrd |
|- ( ph -> A C_ CC ) |
| 22 |
18 21
|
sstrd |
|- ( ph -> dom ( ( S Dn F ) ` N ) C_ CC ) |
| 23 |
22 5
|
sseldd |
|- ( ph -> B e. CC ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ x e. CC ) -> B e. CC ) |
| 25 |
11 24
|
subcld |
|- ( ( ph /\ x e. CC ) -> ( x - B ) e. CC ) |
| 26 |
|
df-idp |
|- Xp = ( _I |` CC ) |
| 27 |
|
mptresid |
|- ( _I |` CC ) = ( x e. CC |-> x ) |
| 28 |
26 27
|
eqtri |
|- Xp = ( x e. CC |-> x ) |
| 29 |
28
|
a1i |
|- ( ph -> Xp = ( x e. CC |-> x ) ) |
| 30 |
|
fconstmpt |
|- ( CC X. { B } ) = ( x e. CC |-> B ) |
| 31 |
30
|
a1i |
|- ( ph -> ( CC X. { B } ) = ( x e. CC |-> B ) ) |
| 32 |
13 11 24 29 31
|
offval2 |
|- ( ph -> ( Xp oF - ( CC X. { B } ) ) = ( x e. CC |-> ( x - B ) ) ) |
| 33 |
|
eqidd |
|- ( ph -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) = ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) |
| 34 |
|
oveq1 |
|- ( y = ( x - B ) -> ( y ^ k ) = ( ( x - B ) ^ k ) ) |
| 35 |
34
|
oveq2d |
|- ( y = ( x - B ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) |
| 36 |
35
|
sumeq2sdv |
|- ( y = ( x - B ) -> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) |
| 37 |
25 32 33 36
|
fmptco |
|- ( ph -> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) = ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) |
| 38 |
10 37
|
eqtr4d |
|- ( ph -> T = ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) ) |
| 39 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 40 |
39
|
subrgss |
|- ( D e. ( SubRing ` CCfld ) -> D C_ CC ) |
| 41 |
7 40
|
syl |
|- ( ph -> D C_ CC ) |
| 42 |
41 4 9
|
elplyd |
|- ( ph -> ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) e. ( Poly ` D ) ) |
| 43 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
| 44 |
43
|
subrg1cl |
|- ( D e. ( SubRing ` CCfld ) -> 1 e. D ) |
| 45 |
7 44
|
syl |
|- ( ph -> 1 e. D ) |
| 46 |
|
plyid |
|- ( ( D C_ CC /\ 1 e. D ) -> Xp e. ( Poly ` D ) ) |
| 47 |
41 45 46
|
syl2anc |
|- ( ph -> Xp e. ( Poly ` D ) ) |
| 48 |
|
plyconst |
|- ( ( D C_ CC /\ B e. D ) -> ( CC X. { B } ) e. ( Poly ` D ) ) |
| 49 |
41 8 48
|
syl2anc |
|- ( ph -> ( CC X. { B } ) e. ( Poly ` D ) ) |
| 50 |
|
subrgsubg |
|- ( D e. ( SubRing ` CCfld ) -> D e. ( SubGrp ` CCfld ) ) |
| 51 |
7 50
|
syl |
|- ( ph -> D e. ( SubGrp ` CCfld ) ) |
| 52 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 53 |
52
|
subgcl |
|- ( ( D e. ( SubGrp ` CCfld ) /\ u e. D /\ v e. D ) -> ( u + v ) e. D ) |
| 54 |
53
|
3expb |
|- ( ( D e. ( SubGrp ` CCfld ) /\ ( u e. D /\ v e. D ) ) -> ( u + v ) e. D ) |
| 55 |
51 54
|
sylan |
|- ( ( ph /\ ( u e. D /\ v e. D ) ) -> ( u + v ) e. D ) |
| 56 |
40
|
sseld |
|- ( D e. ( SubRing ` CCfld ) -> ( u e. D -> u e. CC ) ) |
| 57 |
56
|
a1dd |
|- ( D e. ( SubRing ` CCfld ) -> ( u e. D -> ( v e. D -> u e. CC ) ) ) |
| 58 |
57
|
3imp |
|- ( ( D e. ( SubRing ` CCfld ) /\ u e. D /\ v e. D ) -> u e. CC ) |
| 59 |
40
|
sseld |
|- ( D e. ( SubRing ` CCfld ) -> ( v e. D -> v e. CC ) ) |
| 60 |
59
|
a1d |
|- ( D e. ( SubRing ` CCfld ) -> ( u e. D -> ( v e. D -> v e. CC ) ) ) |
| 61 |
60
|
3imp |
|- ( ( D e. ( SubRing ` CCfld ) /\ u e. D /\ v e. D ) -> v e. CC ) |
| 62 |
|
ovmpot |
|- ( ( u e. CC /\ v e. CC ) -> ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) = ( u x. v ) ) |
| 63 |
58 61 62
|
syl2anc |
|- ( ( D e. ( SubRing ` CCfld ) /\ u e. D /\ v e. D ) -> ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) = ( u x. v ) ) |
| 64 |
|
mpocnfldmul |
|- ( x e. CC , y e. CC |-> ( x x. y ) ) = ( .r ` CCfld ) |
| 65 |
64
|
subrgmcl |
|- ( ( D e. ( SubRing ` CCfld ) /\ u e. D /\ v e. D ) -> ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) e. D ) |
| 66 |
63 65
|
eqeltrrd |
|- ( ( D e. ( SubRing ` CCfld ) /\ u e. D /\ v e. D ) -> ( u x. v ) e. D ) |
| 67 |
66
|
3expb |
|- ( ( D e. ( SubRing ` CCfld ) /\ ( u e. D /\ v e. D ) ) -> ( u x. v ) e. D ) |
| 68 |
7 67
|
sylan |
|- ( ( ph /\ ( u e. D /\ v e. D ) ) -> ( u x. v ) e. D ) |
| 69 |
|
ax-1cn |
|- 1 e. CC |
| 70 |
|
cnfldneg |
|- ( 1 e. CC -> ( ( invg ` CCfld ) ` 1 ) = -u 1 ) |
| 71 |
69 70
|
ax-mp |
|- ( ( invg ` CCfld ) ` 1 ) = -u 1 |
| 72 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
| 73 |
72
|
subginvcl |
|- ( ( D e. ( SubGrp ` CCfld ) /\ 1 e. D ) -> ( ( invg ` CCfld ) ` 1 ) e. D ) |
| 74 |
51 45 73
|
syl2anc |
|- ( ph -> ( ( invg ` CCfld ) ` 1 ) e. D ) |
| 75 |
71 74
|
eqeltrrid |
|- ( ph -> -u 1 e. D ) |
| 76 |
47 49 55 68 75
|
plysub |
|- ( ph -> ( Xp oF - ( CC X. { B } ) ) e. ( Poly ` D ) ) |
| 77 |
42 76 55 68
|
plyco |
|- ( ph -> ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) e. ( Poly ` D ) ) |
| 78 |
38 77
|
eqeltrd |
|- ( ph -> T e. ( Poly ` D ) ) |
| 79 |
38
|
fveq2d |
|- ( ph -> ( deg ` T ) = ( deg ` ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) ) ) |
| 80 |
|
eqid |
|- ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) = ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) |
| 81 |
|
eqid |
|- ( deg ` ( Xp oF - ( CC X. { B } ) ) ) = ( deg ` ( Xp oF - ( CC X. { B } ) ) ) |
| 82 |
80 81 42 76
|
dgrco |
|- ( ph -> ( deg ` ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) o. ( Xp oF - ( CC X. { B } ) ) ) ) = ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. ( deg ` ( Xp oF - ( CC X. { B } ) ) ) ) ) |
| 83 |
|
eqid |
|- ( Xp oF - ( CC X. { B } ) ) = ( Xp oF - ( CC X. { B } ) ) |
| 84 |
83
|
plyremlem |
|- ( B e. CC -> ( ( Xp oF - ( CC X. { B } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { B } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { B } ) ) " { 0 } ) = { B } ) ) |
| 85 |
23 84
|
syl |
|- ( ph -> ( ( Xp oF - ( CC X. { B } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { B } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { B } ) ) " { 0 } ) = { B } ) ) |
| 86 |
85
|
simp2d |
|- ( ph -> ( deg ` ( Xp oF - ( CC X. { B } ) ) ) = 1 ) |
| 87 |
86
|
oveq2d |
|- ( ph -> ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. ( deg ` ( Xp oF - ( CC X. { B } ) ) ) ) = ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. 1 ) ) |
| 88 |
|
dgrcl |
|- ( ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) e. ( Poly ` D ) -> ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) e. NN0 ) |
| 89 |
42 88
|
syl |
|- ( ph -> ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) e. NN0 ) |
| 90 |
89
|
nn0cnd |
|- ( ph -> ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) e. CC ) |
| 91 |
90
|
mulridd |
|- ( ph -> ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. 1 ) = ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) ) |
| 92 |
87 91
|
eqtrd |
|- ( ph -> ( ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) x. ( deg ` ( Xp oF - ( CC X. { B } ) ) ) ) = ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) ) |
| 93 |
79 82 92
|
3eqtrd |
|- ( ph -> ( deg ` T ) = ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) ) |
| 94 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
| 95 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
| 96 |
1 15 94 95
|
syl2an3an |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
| 97 |
|
id |
|- ( k e. ( 0 ... N ) -> k e. ( 0 ... N ) ) |
| 98 |
|
dvn2bss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` k ) ) |
| 99 |
1 15 97 98
|
syl2an3an |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` k ) ) |
| 100 |
5
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( S Dn F ) ` N ) ) |
| 101 |
99 100
|
sseldd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
| 102 |
96 101
|
ffvelcdmd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) |
| 103 |
94
|
adantl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
| 104 |
103
|
faccld |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. NN ) |
| 105 |
104
|
nncnd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. CC ) |
| 106 |
104
|
nnne0d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) =/= 0 ) |
| 107 |
102 105 106
|
divcld |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
| 108 |
42 4 107 33
|
dgrle |
|- ( ph -> ( deg ` ( y e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( y ^ k ) ) ) ) <_ N ) |
| 109 |
93 108
|
eqbrtrd |
|- ( ph -> ( deg ` T ) <_ N ) |
| 110 |
78 109
|
jca |
|- ( ph -> ( T e. ( Poly ` D ) /\ ( deg ` T ) <_ N ) ) |