Step |
Hyp |
Ref |
Expression |
1 |
|
taylpfval.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
taylpfval.f |
|- ( ph -> F : A --> CC ) |
3 |
|
taylpfval.a |
|- ( ph -> A C_ S ) |
4 |
|
taylpfval.n |
|- ( ph -> N e. NN0 ) |
5 |
|
taylpfval.b |
|- ( ph -> B e. dom ( ( S Dn F ) ` N ) ) |
6 |
|
taylpfval.t |
|- T = ( N ( S Tayl F ) B ) |
7 |
|
taylpval.x |
|- ( ph -> X e. CC ) |
8 |
1 2 3 4 5 6
|
taylpfval |
|- ( ph -> T = ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) |
9 |
|
simplr |
|- ( ( ( ph /\ x = X ) /\ k e. ( 0 ... N ) ) -> x = X ) |
10 |
9
|
oveq1d |
|- ( ( ( ph /\ x = X ) /\ k e. ( 0 ... N ) ) -> ( x - B ) = ( X - B ) ) |
11 |
10
|
oveq1d |
|- ( ( ( ph /\ x = X ) /\ k e. ( 0 ... N ) ) -> ( ( x - B ) ^ k ) = ( ( X - B ) ^ k ) ) |
12 |
11
|
oveq2d |
|- ( ( ( ph /\ x = X ) /\ k e. ( 0 ... N ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) |
13 |
12
|
sumeq2dv |
|- ( ( ph /\ x = X ) -> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) |
14 |
|
sumex |
|- sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. _V |
15 |
14
|
a1i |
|- ( ph -> sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. _V ) |
16 |
8 13 7 15
|
fvmptd |
|- ( ph -> ( T ` X ) = sum_ k e. ( 0 ... N ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) |