Step |
Hyp |
Ref |
Expression |
1 |
|
taylthlem1.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
taylthlem1.f |
|- ( ph -> F : A --> CC ) |
3 |
|
taylthlem1.a |
|- ( ph -> A C_ S ) |
4 |
|
taylthlem1.d |
|- ( ph -> dom ( ( S Dn F ) ` N ) = A ) |
5 |
|
taylthlem1.n |
|- ( ph -> N e. NN ) |
6 |
|
taylthlem1.b |
|- ( ph -> B e. A ) |
7 |
|
taylthlem1.t |
|- T = ( N ( S Tayl F ) B ) |
8 |
|
taylthlem1.r |
|- R = ( x e. ( A \ { B } ) |-> ( ( ( F ` x ) - ( T ` x ) ) / ( ( x - B ) ^ N ) ) ) |
9 |
|
taylthlem1.i |
|- ( ( ph /\ ( n e. ( 1 ..^ N ) /\ 0 e. ( ( y e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` y ) ) / ( ( y - B ) ^ n ) ) ) limCC B ) ) ) -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - ( n + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( n + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( n + 1 ) ) ) ) limCC B ) ) |
10 |
|
elfz1end |
|- ( N e. NN <-> N e. ( 1 ... N ) ) |
11 |
5 10
|
sylib |
|- ( ph -> N e. ( 1 ... N ) ) |
12 |
|
oveq2 |
|- ( m = 1 -> ( N - m ) = ( N - 1 ) ) |
13 |
12
|
fveq2d |
|- ( m = 1 -> ( ( S Dn F ) ` ( N - m ) ) = ( ( S Dn F ) ` ( N - 1 ) ) ) |
14 |
13
|
fveq1d |
|- ( m = 1 -> ( ( ( S Dn F ) ` ( N - m ) ) ` x ) = ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) ) |
15 |
12
|
fveq2d |
|- ( m = 1 -> ( ( CC Dn T ) ` ( N - m ) ) = ( ( CC Dn T ) ` ( N - 1 ) ) ) |
16 |
15
|
fveq1d |
|- ( m = 1 -> ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) = ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) |
17 |
14 16
|
oveq12d |
|- ( m = 1 -> ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) = ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) ) |
18 |
|
oveq2 |
|- ( m = 1 -> ( ( x - B ) ^ m ) = ( ( x - B ) ^ 1 ) ) |
19 |
17 18
|
oveq12d |
|- ( m = 1 -> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) = ( ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) / ( ( x - B ) ^ 1 ) ) ) |
20 |
19
|
mpteq2dv |
|- ( m = 1 -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) / ( ( x - B ) ^ 1 ) ) ) ) |
21 |
20
|
oveq1d |
|- ( m = 1 -> ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) / ( ( x - B ) ^ 1 ) ) ) limCC B ) ) |
22 |
21
|
eleq2d |
|- ( m = 1 -> ( 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) limCC B ) <-> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) / ( ( x - B ) ^ 1 ) ) ) limCC B ) ) ) |
23 |
22
|
imbi2d |
|- ( m = 1 -> ( ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) limCC B ) ) <-> ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) / ( ( x - B ) ^ 1 ) ) ) limCC B ) ) ) ) |
24 |
|
oveq2 |
|- ( m = n -> ( N - m ) = ( N - n ) ) |
25 |
24
|
fveq2d |
|- ( m = n -> ( ( S Dn F ) ` ( N - m ) ) = ( ( S Dn F ) ` ( N - n ) ) ) |
26 |
25
|
fveq1d |
|- ( m = n -> ( ( ( S Dn F ) ` ( N - m ) ) ` x ) = ( ( ( S Dn F ) ` ( N - n ) ) ` x ) ) |
27 |
24
|
fveq2d |
|- ( m = n -> ( ( CC Dn T ) ` ( N - m ) ) = ( ( CC Dn T ) ` ( N - n ) ) ) |
28 |
27
|
fveq1d |
|- ( m = n -> ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) = ( ( ( CC Dn T ) ` ( N - n ) ) ` x ) ) |
29 |
26 28
|
oveq12d |
|- ( m = n -> ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) = ( ( ( ( S Dn F ) ` ( N - n ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` x ) ) ) |
30 |
|
oveq2 |
|- ( m = n -> ( ( x - B ) ^ m ) = ( ( x - B ) ^ n ) ) |
31 |
29 30
|
oveq12d |
|- ( m = n -> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) = ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` x ) ) / ( ( x - B ) ^ n ) ) ) |
32 |
31
|
mpteq2dv |
|- ( m = n -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` x ) ) / ( ( x - B ) ^ n ) ) ) ) |
33 |
|
fveq2 |
|- ( x = y -> ( ( ( S Dn F ) ` ( N - n ) ) ` x ) = ( ( ( S Dn F ) ` ( N - n ) ) ` y ) ) |
34 |
|
fveq2 |
|- ( x = y -> ( ( ( CC Dn T ) ` ( N - n ) ) ` x ) = ( ( ( CC Dn T ) ` ( N - n ) ) ` y ) ) |
35 |
33 34
|
oveq12d |
|- ( x = y -> ( ( ( ( S Dn F ) ` ( N - n ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` x ) ) = ( ( ( ( S Dn F ) ` ( N - n ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` y ) ) ) |
36 |
|
oveq1 |
|- ( x = y -> ( x - B ) = ( y - B ) ) |
37 |
36
|
oveq1d |
|- ( x = y -> ( ( x - B ) ^ n ) = ( ( y - B ) ^ n ) ) |
38 |
35 37
|
oveq12d |
|- ( x = y -> ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` x ) ) / ( ( x - B ) ^ n ) ) = ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` y ) ) / ( ( y - B ) ^ n ) ) ) |
39 |
38
|
cbvmptv |
|- ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` x ) ) / ( ( x - B ) ^ n ) ) ) = ( y e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` y ) ) / ( ( y - B ) ^ n ) ) ) |
40 |
32 39
|
eqtrdi |
|- ( m = n -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) = ( y e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` y ) ) / ( ( y - B ) ^ n ) ) ) ) |
41 |
40
|
oveq1d |
|- ( m = n -> ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) limCC B ) = ( ( y e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` y ) ) / ( ( y - B ) ^ n ) ) ) limCC B ) ) |
42 |
41
|
eleq2d |
|- ( m = n -> ( 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) limCC B ) <-> 0 e. ( ( y e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` y ) ) / ( ( y - B ) ^ n ) ) ) limCC B ) ) ) |
43 |
42
|
imbi2d |
|- ( m = n -> ( ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) limCC B ) ) <-> ( ph -> 0 e. ( ( y e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` y ) ) / ( ( y - B ) ^ n ) ) ) limCC B ) ) ) ) |
44 |
|
oveq2 |
|- ( m = ( n + 1 ) -> ( N - m ) = ( N - ( n + 1 ) ) ) |
45 |
44
|
fveq2d |
|- ( m = ( n + 1 ) -> ( ( S Dn F ) ` ( N - m ) ) = ( ( S Dn F ) ` ( N - ( n + 1 ) ) ) ) |
46 |
45
|
fveq1d |
|- ( m = ( n + 1 ) -> ( ( ( S Dn F ) ` ( N - m ) ) ` x ) = ( ( ( S Dn F ) ` ( N - ( n + 1 ) ) ) ` x ) ) |
47 |
44
|
fveq2d |
|- ( m = ( n + 1 ) -> ( ( CC Dn T ) ` ( N - m ) ) = ( ( CC Dn T ) ` ( N - ( n + 1 ) ) ) ) |
48 |
47
|
fveq1d |
|- ( m = ( n + 1 ) -> ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) = ( ( ( CC Dn T ) ` ( N - ( n + 1 ) ) ) ` x ) ) |
49 |
46 48
|
oveq12d |
|- ( m = ( n + 1 ) -> ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) = ( ( ( ( S Dn F ) ` ( N - ( n + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( n + 1 ) ) ) ` x ) ) ) |
50 |
|
oveq2 |
|- ( m = ( n + 1 ) -> ( ( x - B ) ^ m ) = ( ( x - B ) ^ ( n + 1 ) ) ) |
51 |
49 50
|
oveq12d |
|- ( m = ( n + 1 ) -> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) = ( ( ( ( ( S Dn F ) ` ( N - ( n + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( n + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( n + 1 ) ) ) ) |
52 |
51
|
mpteq2dv |
|- ( m = ( n + 1 ) -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - ( n + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( n + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( n + 1 ) ) ) ) ) |
53 |
52
|
oveq1d |
|- ( m = ( n + 1 ) -> ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - ( n + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( n + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( n + 1 ) ) ) ) limCC B ) ) |
54 |
53
|
eleq2d |
|- ( m = ( n + 1 ) -> ( 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) limCC B ) <-> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - ( n + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( n + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( n + 1 ) ) ) ) limCC B ) ) ) |
55 |
54
|
imbi2d |
|- ( m = ( n + 1 ) -> ( ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) limCC B ) ) <-> ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - ( n + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( n + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( n + 1 ) ) ) ) limCC B ) ) ) ) |
56 |
|
oveq2 |
|- ( m = N -> ( N - m ) = ( N - N ) ) |
57 |
56
|
fveq2d |
|- ( m = N -> ( ( S Dn F ) ` ( N - m ) ) = ( ( S Dn F ) ` ( N - N ) ) ) |
58 |
57
|
fveq1d |
|- ( m = N -> ( ( ( S Dn F ) ` ( N - m ) ) ` x ) = ( ( ( S Dn F ) ` ( N - N ) ) ` x ) ) |
59 |
56
|
fveq2d |
|- ( m = N -> ( ( CC Dn T ) ` ( N - m ) ) = ( ( CC Dn T ) ` ( N - N ) ) ) |
60 |
59
|
fveq1d |
|- ( m = N -> ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) = ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) |
61 |
58 60
|
oveq12d |
|- ( m = N -> ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) = ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) ) |
62 |
|
oveq2 |
|- ( m = N -> ( ( x - B ) ^ m ) = ( ( x - B ) ^ N ) ) |
63 |
61 62
|
oveq12d |
|- ( m = N -> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) = ( ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) / ( ( x - B ) ^ N ) ) ) |
64 |
63
|
mpteq2dv |
|- ( m = N -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) / ( ( x - B ) ^ N ) ) ) ) |
65 |
64
|
oveq1d |
|- ( m = N -> ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) / ( ( x - B ) ^ N ) ) ) limCC B ) ) |
66 |
65
|
eleq2d |
|- ( m = N -> ( 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) limCC B ) <-> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) / ( ( x - B ) ^ N ) ) ) limCC B ) ) ) |
67 |
66
|
imbi2d |
|- ( m = N -> ( ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - m ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - m ) ) ` x ) ) / ( ( x - B ) ^ m ) ) ) limCC B ) ) <-> ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) / ( ( x - B ) ^ N ) ) ) limCC B ) ) ) ) |
68 |
|
fveq2 |
|- ( y = B -> ( ( ( S Dn F ) ` N ) ` y ) = ( ( ( S Dn F ) ` N ) ` B ) ) |
69 |
|
fveq2 |
|- ( y = B -> ( ( ( CC Dn T ) ` N ) ` y ) = ( ( ( CC Dn T ) ` N ) ` B ) ) |
70 |
68 69
|
oveq12d |
|- ( y = B -> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) = ( ( ( ( S Dn F ) ` N ) ` B ) - ( ( ( CC Dn T ) ` N ) ` B ) ) ) |
71 |
|
eqid |
|- ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) = ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) |
72 |
|
ovex |
|- ( ( ( ( S Dn F ) ` N ) ` B ) - ( ( ( CC Dn T ) ` N ) ` B ) ) e. _V |
73 |
70 71 72
|
fvmpt |
|- ( B e. A -> ( ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) ` B ) = ( ( ( ( S Dn F ) ` N ) ` B ) - ( ( ( CC Dn T ) ` N ) ` B ) ) ) |
74 |
6 73
|
syl |
|- ( ph -> ( ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) ` B ) = ( ( ( ( S Dn F ) ` N ) ` B ) - ( ( ( CC Dn T ) ` N ) ` B ) ) ) |
75 |
5
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
76 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
77 |
75 76
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
78 |
|
eluzfz2b |
|- ( N e. ( ZZ>= ` 0 ) <-> N e. ( 0 ... N ) ) |
79 |
77 78
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
80 |
6 4
|
eleqtrrd |
|- ( ph -> B e. dom ( ( S Dn F ) ` N ) ) |
81 |
1 2 3 79 80 7
|
dvntaylp0 |
|- ( ph -> ( ( ( CC Dn T ) ` N ) ` B ) = ( ( ( S Dn F ) ` N ) ` B ) ) |
82 |
81
|
oveq2d |
|- ( ph -> ( ( ( ( S Dn F ) ` N ) ` B ) - ( ( ( CC Dn T ) ` N ) ` B ) ) = ( ( ( ( S Dn F ) ` N ) ` B ) - ( ( ( S Dn F ) ` N ) ` B ) ) ) |
83 |
|
cnex |
|- CC e. _V |
84 |
83
|
a1i |
|- ( ph -> CC e. _V ) |
85 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
86 |
84 1 2 3 85
|
syl22anc |
|- ( ph -> F e. ( CC ^pm S ) ) |
87 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( S Dn F ) ` N ) : dom ( ( S Dn F ) ` N ) --> CC ) |
88 |
1 86 75 87
|
syl3anc |
|- ( ph -> ( ( S Dn F ) ` N ) : dom ( ( S Dn F ) ` N ) --> CC ) |
89 |
88 80
|
ffvelrnd |
|- ( ph -> ( ( ( S Dn F ) ` N ) ` B ) e. CC ) |
90 |
89
|
subidd |
|- ( ph -> ( ( ( ( S Dn F ) ` N ) ` B ) - ( ( ( S Dn F ) ` N ) ` B ) ) = 0 ) |
91 |
74 82 90
|
3eqtrd |
|- ( ph -> ( ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) ` B ) = 0 ) |
92 |
|
funmpt |
|- Fun ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) |
93 |
|
ovex |
|- ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) e. _V |
94 |
93 71
|
dmmpti |
|- dom ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) = A |
95 |
6 94
|
eleqtrrdi |
|- ( ph -> B e. dom ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) ) |
96 |
|
funbrfvb |
|- ( ( Fun ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) /\ B e. dom ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) ) -> ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) ` B ) = 0 <-> B ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) 0 ) ) |
97 |
92 95 96
|
sylancr |
|- ( ph -> ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) ` B ) = 0 <-> B ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) 0 ) ) |
98 |
91 97
|
mpbid |
|- ( ph -> B ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) 0 ) |
99 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
100 |
5 99
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
101 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ ( N - 1 ) e. NN0 ) -> ( ( S Dn F ) ` ( N - 1 ) ) : dom ( ( S Dn F ) ` ( N - 1 ) ) --> CC ) |
102 |
1 86 100 101
|
syl3anc |
|- ( ph -> ( ( S Dn F ) ` ( N - 1 ) ) : dom ( ( S Dn F ) ` ( N - 1 ) ) --> CC ) |
103 |
|
dvnbss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ ( N - 1 ) e. NN0 ) -> dom ( ( S Dn F ) ` ( N - 1 ) ) C_ dom F ) |
104 |
1 86 100 103
|
syl3anc |
|- ( ph -> dom ( ( S Dn F ) ` ( N - 1 ) ) C_ dom F ) |
105 |
2 104
|
fssdmd |
|- ( ph -> dom ( ( S Dn F ) ` ( N - 1 ) ) C_ A ) |
106 |
|
fzo0end |
|- ( N e. NN -> ( N - 1 ) e. ( 0 ..^ N ) ) |
107 |
|
elfzofz |
|- ( ( N - 1 ) e. ( 0 ..^ N ) -> ( N - 1 ) e. ( 0 ... N ) ) |
108 |
5 106 107
|
3syl |
|- ( ph -> ( N - 1 ) e. ( 0 ... N ) ) |
109 |
|
dvn2bss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ ( N - 1 ) e. ( 0 ... N ) ) -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` ( N - 1 ) ) ) |
110 |
1 86 108 109
|
syl3anc |
|- ( ph -> dom ( ( S Dn F ) ` N ) C_ dom ( ( S Dn F ) ` ( N - 1 ) ) ) |
111 |
4 110
|
eqsstrrd |
|- ( ph -> A C_ dom ( ( S Dn F ) ` ( N - 1 ) ) ) |
112 |
105 111
|
eqssd |
|- ( ph -> dom ( ( S Dn F ) ` ( N - 1 ) ) = A ) |
113 |
112
|
feq2d |
|- ( ph -> ( ( ( S Dn F ) ` ( N - 1 ) ) : dom ( ( S Dn F ) ` ( N - 1 ) ) --> CC <-> ( ( S Dn F ) ` ( N - 1 ) ) : A --> CC ) ) |
114 |
102 113
|
mpbid |
|- ( ph -> ( ( S Dn F ) ` ( N - 1 ) ) : A --> CC ) |
115 |
114
|
ffvelrnda |
|- ( ( ph /\ y e. A ) -> ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) e. CC ) |
116 |
4
|
feq2d |
|- ( ph -> ( ( ( S Dn F ) ` N ) : dom ( ( S Dn F ) ` N ) --> CC <-> ( ( S Dn F ) ` N ) : A --> CC ) ) |
117 |
88 116
|
mpbid |
|- ( ph -> ( ( S Dn F ) ` N ) : A --> CC ) |
118 |
117
|
ffvelrnda |
|- ( ( ph /\ y e. A ) -> ( ( ( S Dn F ) ` N ) ` y ) e. CC ) |
119 |
5
|
nncnd |
|- ( ph -> N e. CC ) |
120 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
121 |
119 120
|
npcand |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
122 |
121
|
fveq2d |
|- ( ph -> ( ( S Dn F ) ` ( ( N - 1 ) + 1 ) ) = ( ( S Dn F ) ` N ) ) |
123 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
124 |
1 123
|
syl |
|- ( ph -> S C_ CC ) |
125 |
|
dvnp1 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ ( N - 1 ) e. NN0 ) -> ( ( S Dn F ) ` ( ( N - 1 ) + 1 ) ) = ( S _D ( ( S Dn F ) ` ( N - 1 ) ) ) ) |
126 |
124 86 100 125
|
syl3anc |
|- ( ph -> ( ( S Dn F ) ` ( ( N - 1 ) + 1 ) ) = ( S _D ( ( S Dn F ) ` ( N - 1 ) ) ) ) |
127 |
122 126
|
eqtr3d |
|- ( ph -> ( ( S Dn F ) ` N ) = ( S _D ( ( S Dn F ) ` ( N - 1 ) ) ) ) |
128 |
117
|
feqmptd |
|- ( ph -> ( ( S Dn F ) ` N ) = ( y e. A |-> ( ( ( S Dn F ) ` N ) ` y ) ) ) |
129 |
114
|
feqmptd |
|- ( ph -> ( ( S Dn F ) ` ( N - 1 ) ) = ( y e. A |-> ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) ) ) |
130 |
129
|
oveq2d |
|- ( ph -> ( S _D ( ( S Dn F ) ` ( N - 1 ) ) ) = ( S _D ( y e. A |-> ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) ) ) ) |
131 |
127 128 130
|
3eqtr3rd |
|- ( ph -> ( S _D ( y e. A |-> ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) ) ) = ( y e. A |-> ( ( ( S Dn F ) ` N ) ` y ) ) ) |
132 |
3 124
|
sstrd |
|- ( ph -> A C_ CC ) |
133 |
132
|
sselda |
|- ( ( ph /\ y e. A ) -> y e. CC ) |
134 |
|
1nn0 |
|- 1 e. NN0 |
135 |
134
|
a1i |
|- ( ph -> 1 e. NN0 ) |
136 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( ( ( S Dn F ) ` ( N - 1 ) ) : A --> CC /\ A C_ S ) ) -> ( ( S Dn F ) ` ( N - 1 ) ) e. ( CC ^pm S ) ) |
137 |
84 1 114 3 136
|
syl22anc |
|- ( ph -> ( ( S Dn F ) ` ( N - 1 ) ) e. ( CC ^pm S ) ) |
138 |
|
dvn1 |
|- ( ( S C_ CC /\ ( ( S Dn F ) ` ( N - 1 ) ) e. ( CC ^pm S ) ) -> ( ( S Dn ( ( S Dn F ) ` ( N - 1 ) ) ) ` 1 ) = ( S _D ( ( S Dn F ) ` ( N - 1 ) ) ) ) |
139 |
124 137 138
|
syl2anc |
|- ( ph -> ( ( S Dn ( ( S Dn F ) ` ( N - 1 ) ) ) ` 1 ) = ( S _D ( ( S Dn F ) ` ( N - 1 ) ) ) ) |
140 |
126 122
|
eqtr3d |
|- ( ph -> ( S _D ( ( S Dn F ) ` ( N - 1 ) ) ) = ( ( S Dn F ) ` N ) ) |
141 |
139 140
|
eqtrd |
|- ( ph -> ( ( S Dn ( ( S Dn F ) ` ( N - 1 ) ) ) ` 1 ) = ( ( S Dn F ) ` N ) ) |
142 |
141
|
dmeqd |
|- ( ph -> dom ( ( S Dn ( ( S Dn F ) ` ( N - 1 ) ) ) ` 1 ) = dom ( ( S Dn F ) ` N ) ) |
143 |
80 142
|
eleqtrrd |
|- ( ph -> B e. dom ( ( S Dn ( ( S Dn F ) ` ( N - 1 ) ) ) ` 1 ) ) |
144 |
|
eqid |
|- ( 1 ( S Tayl ( ( S Dn F ) ` ( N - 1 ) ) ) B ) = ( 1 ( S Tayl ( ( S Dn F ) ` ( N - 1 ) ) ) B ) |
145 |
1 114 3 135 143 144
|
taylpf |
|- ( ph -> ( 1 ( S Tayl ( ( S Dn F ) ` ( N - 1 ) ) ) B ) : CC --> CC ) |
146 |
120 119
|
pncan3d |
|- ( ph -> ( 1 + ( N - 1 ) ) = N ) |
147 |
146
|
oveq1d |
|- ( ph -> ( ( 1 + ( N - 1 ) ) ( S Tayl F ) B ) = ( N ( S Tayl F ) B ) ) |
148 |
7 147
|
eqtr4id |
|- ( ph -> T = ( ( 1 + ( N - 1 ) ) ( S Tayl F ) B ) ) |
149 |
148
|
oveq2d |
|- ( ph -> ( CC Dn T ) = ( CC Dn ( ( 1 + ( N - 1 ) ) ( S Tayl F ) B ) ) ) |
150 |
149
|
fveq1d |
|- ( ph -> ( ( CC Dn T ) ` ( N - 1 ) ) = ( ( CC Dn ( ( 1 + ( N - 1 ) ) ( S Tayl F ) B ) ) ` ( N - 1 ) ) ) |
151 |
146
|
fveq2d |
|- ( ph -> ( ( S Dn F ) ` ( 1 + ( N - 1 ) ) ) = ( ( S Dn F ) ` N ) ) |
152 |
151
|
dmeqd |
|- ( ph -> dom ( ( S Dn F ) ` ( 1 + ( N - 1 ) ) ) = dom ( ( S Dn F ) ` N ) ) |
153 |
80 152
|
eleqtrrd |
|- ( ph -> B e. dom ( ( S Dn F ) ` ( 1 + ( N - 1 ) ) ) ) |
154 |
1 2 3 100 135 153
|
dvntaylp |
|- ( ph -> ( ( CC Dn ( ( 1 + ( N - 1 ) ) ( S Tayl F ) B ) ) ` ( N - 1 ) ) = ( 1 ( S Tayl ( ( S Dn F ) ` ( N - 1 ) ) ) B ) ) |
155 |
150 154
|
eqtrd |
|- ( ph -> ( ( CC Dn T ) ` ( N - 1 ) ) = ( 1 ( S Tayl ( ( S Dn F ) ` ( N - 1 ) ) ) B ) ) |
156 |
155
|
feq1d |
|- ( ph -> ( ( ( CC Dn T ) ` ( N - 1 ) ) : CC --> CC <-> ( 1 ( S Tayl ( ( S Dn F ) ` ( N - 1 ) ) ) B ) : CC --> CC ) ) |
157 |
145 156
|
mpbird |
|- ( ph -> ( ( CC Dn T ) ` ( N - 1 ) ) : CC --> CC ) |
158 |
157
|
ffvelrnda |
|- ( ( ph /\ y e. CC ) -> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) e. CC ) |
159 |
133 158
|
syldan |
|- ( ( ph /\ y e. A ) -> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) e. CC ) |
160 |
|
0nn0 |
|- 0 e. NN0 |
161 |
160
|
a1i |
|- ( ph -> 0 e. NN0 ) |
162 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( ( ( S Dn F ) ` N ) : A --> CC /\ A C_ S ) ) -> ( ( S Dn F ) ` N ) e. ( CC ^pm S ) ) |
163 |
84 1 117 3 162
|
syl22anc |
|- ( ph -> ( ( S Dn F ) ` N ) e. ( CC ^pm S ) ) |
164 |
|
dvn0 |
|- ( ( S C_ CC /\ ( ( S Dn F ) ` N ) e. ( CC ^pm S ) ) -> ( ( S Dn ( ( S Dn F ) ` N ) ) ` 0 ) = ( ( S Dn F ) ` N ) ) |
165 |
124 163 164
|
syl2anc |
|- ( ph -> ( ( S Dn ( ( S Dn F ) ` N ) ) ` 0 ) = ( ( S Dn F ) ` N ) ) |
166 |
165
|
dmeqd |
|- ( ph -> dom ( ( S Dn ( ( S Dn F ) ` N ) ) ` 0 ) = dom ( ( S Dn F ) ` N ) ) |
167 |
80 166
|
eleqtrrd |
|- ( ph -> B e. dom ( ( S Dn ( ( S Dn F ) ` N ) ) ` 0 ) ) |
168 |
|
eqid |
|- ( 0 ( S Tayl ( ( S Dn F ) ` N ) ) B ) = ( 0 ( S Tayl ( ( S Dn F ) ` N ) ) B ) |
169 |
1 117 3 161 167 168
|
taylpf |
|- ( ph -> ( 0 ( S Tayl ( ( S Dn F ) ` N ) ) B ) : CC --> CC ) |
170 |
119
|
addid2d |
|- ( ph -> ( 0 + N ) = N ) |
171 |
170
|
oveq1d |
|- ( ph -> ( ( 0 + N ) ( S Tayl F ) B ) = ( N ( S Tayl F ) B ) ) |
172 |
171 7
|
eqtr4di |
|- ( ph -> ( ( 0 + N ) ( S Tayl F ) B ) = T ) |
173 |
172
|
oveq2d |
|- ( ph -> ( CC Dn ( ( 0 + N ) ( S Tayl F ) B ) ) = ( CC Dn T ) ) |
174 |
173
|
fveq1d |
|- ( ph -> ( ( CC Dn ( ( 0 + N ) ( S Tayl F ) B ) ) ` N ) = ( ( CC Dn T ) ` N ) ) |
175 |
170
|
fveq2d |
|- ( ph -> ( ( S Dn F ) ` ( 0 + N ) ) = ( ( S Dn F ) ` N ) ) |
176 |
175
|
dmeqd |
|- ( ph -> dom ( ( S Dn F ) ` ( 0 + N ) ) = dom ( ( S Dn F ) ` N ) ) |
177 |
80 176
|
eleqtrrd |
|- ( ph -> B e. dom ( ( S Dn F ) ` ( 0 + N ) ) ) |
178 |
1 2 3 75 161 177
|
dvntaylp |
|- ( ph -> ( ( CC Dn ( ( 0 + N ) ( S Tayl F ) B ) ) ` N ) = ( 0 ( S Tayl ( ( S Dn F ) ` N ) ) B ) ) |
179 |
174 178
|
eqtr3d |
|- ( ph -> ( ( CC Dn T ) ` N ) = ( 0 ( S Tayl ( ( S Dn F ) ` N ) ) B ) ) |
180 |
179
|
feq1d |
|- ( ph -> ( ( ( CC Dn T ) ` N ) : CC --> CC <-> ( 0 ( S Tayl ( ( S Dn F ) ` N ) ) B ) : CC --> CC ) ) |
181 |
169 180
|
mpbird |
|- ( ph -> ( ( CC Dn T ) ` N ) : CC --> CC ) |
182 |
181
|
ffvelrnda |
|- ( ( ph /\ y e. CC ) -> ( ( ( CC Dn T ) ` N ) ` y ) e. CC ) |
183 |
133 182
|
syldan |
|- ( ( ph /\ y e. A ) -> ( ( ( CC Dn T ) ` N ) ` y ) e. CC ) |
184 |
124
|
sselda |
|- ( ( ph /\ y e. S ) -> y e. CC ) |
185 |
184 158
|
syldan |
|- ( ( ph /\ y e. S ) -> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) e. CC ) |
186 |
184 182
|
syldan |
|- ( ( ph /\ y e. S ) -> ( ( ( CC Dn T ) ` N ) ` y ) e. CC ) |
187 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
188 |
187
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
189 |
|
toponmax |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
190 |
188 189
|
mp1i |
|- ( ph -> CC e. ( TopOpen ` CCfld ) ) |
191 |
|
df-ss |
|- ( S C_ CC <-> ( S i^i CC ) = S ) |
192 |
124 191
|
sylib |
|- ( ph -> ( S i^i CC ) = S ) |
193 |
|
ssid |
|- CC C_ CC |
194 |
193
|
a1i |
|- ( ph -> CC C_ CC ) |
195 |
|
mapsspm |
|- ( CC ^m CC ) C_ ( CC ^pm CC ) |
196 |
1 2 3 75 80 7
|
taylpf |
|- ( ph -> T : CC --> CC ) |
197 |
83 83
|
elmap |
|- ( T e. ( CC ^m CC ) <-> T : CC --> CC ) |
198 |
196 197
|
sylibr |
|- ( ph -> T e. ( CC ^m CC ) ) |
199 |
195 198
|
sselid |
|- ( ph -> T e. ( CC ^pm CC ) ) |
200 |
|
dvnp1 |
|- ( ( CC C_ CC /\ T e. ( CC ^pm CC ) /\ ( N - 1 ) e. NN0 ) -> ( ( CC Dn T ) ` ( ( N - 1 ) + 1 ) ) = ( CC _D ( ( CC Dn T ) ` ( N - 1 ) ) ) ) |
201 |
194 199 100 200
|
syl3anc |
|- ( ph -> ( ( CC Dn T ) ` ( ( N - 1 ) + 1 ) ) = ( CC _D ( ( CC Dn T ) ` ( N - 1 ) ) ) ) |
202 |
121
|
fveq2d |
|- ( ph -> ( ( CC Dn T ) ` ( ( N - 1 ) + 1 ) ) = ( ( CC Dn T ) ` N ) ) |
203 |
201 202
|
eqtr3d |
|- ( ph -> ( CC _D ( ( CC Dn T ) ` ( N - 1 ) ) ) = ( ( CC Dn T ) ` N ) ) |
204 |
157
|
feqmptd |
|- ( ph -> ( ( CC Dn T ) ` ( N - 1 ) ) = ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) |
205 |
204
|
oveq2d |
|- ( ph -> ( CC _D ( ( CC Dn T ) ` ( N - 1 ) ) ) = ( CC _D ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ) |
206 |
181
|
feqmptd |
|- ( ph -> ( ( CC Dn T ) ` N ) = ( y e. CC |-> ( ( ( CC Dn T ) ` N ) ` y ) ) ) |
207 |
203 205 206
|
3eqtr3d |
|- ( ph -> ( CC _D ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) = ( y e. CC |-> ( ( ( CC Dn T ) ` N ) ` y ) ) ) |
208 |
187 1 190 192 158 182 207
|
dvmptres3 |
|- ( ph -> ( S _D ( y e. S |-> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) = ( y e. S |-> ( ( ( CC Dn T ) ` N ) ` y ) ) ) |
209 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
210 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
211 |
188 124 210
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
212 |
|
topontop |
|- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
213 |
211 212
|
syl |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
214 |
|
toponuni |
|- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
215 |
211 214
|
syl |
|- ( ph -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
216 |
3 215
|
sseqtrd |
|- ( ph -> A C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) |
217 |
|
eqid |
|- U. ( ( TopOpen ` CCfld ) |`t S ) = U. ( ( TopOpen ` CCfld ) |`t S ) |
218 |
217
|
ntrss2 |
|- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ A C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) C_ A ) |
219 |
213 216 218
|
syl2anc |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) C_ A ) |
220 |
140
|
dmeqd |
|- ( ph -> dom ( S _D ( ( S Dn F ) ` ( N - 1 ) ) ) = dom ( ( S Dn F ) ` N ) ) |
221 |
220 4
|
eqtrd |
|- ( ph -> dom ( S _D ( ( S Dn F ) ` ( N - 1 ) ) ) = A ) |
222 |
124 114 3 209 187
|
dvbssntr |
|- ( ph -> dom ( S _D ( ( S Dn F ) ` ( N - 1 ) ) ) C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) ) |
223 |
221 222
|
eqsstrrd |
|- ( ph -> A C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) ) |
224 |
219 223
|
eqssd |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) = A ) |
225 |
1 185 186 208 3 209 187 224
|
dvmptres2 |
|- ( ph -> ( S _D ( y e. A |-> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) = ( y e. A |-> ( ( ( CC Dn T ) ` N ) ` y ) ) ) |
226 |
1 115 118 131 159 183 225
|
dvmptsub |
|- ( ph -> ( S _D ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ) = ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) ) |
227 |
226
|
breqd |
|- ( ph -> ( B ( S _D ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ) 0 <-> B ( y e. A |-> ( ( ( ( S Dn F ) ` N ) ` y ) - ( ( ( CC Dn T ) ` N ) ` y ) ) ) 0 ) ) |
228 |
98 227
|
mpbird |
|- ( ph -> B ( S _D ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ) 0 ) |
229 |
|
eqid |
|- ( x e. ( A \ { B } ) |-> ( ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` x ) - ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) ) / ( x - B ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` x ) - ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) ) / ( x - B ) ) ) |
230 |
115 159
|
subcld |
|- ( ( ph /\ y e. A ) -> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) e. CC ) |
231 |
230
|
fmpttd |
|- ( ph -> ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) : A --> CC ) |
232 |
209 187 229 124 231 3
|
eldv |
|- ( ph -> ( B ( S _D ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ) 0 <-> ( B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) /\ 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` x ) - ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) ) / ( x - B ) ) ) limCC B ) ) ) ) |
233 |
228 232
|
mpbid |
|- ( ph -> ( B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) /\ 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` x ) - ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) ) / ( x - B ) ) ) limCC B ) ) ) |
234 |
233
|
simprd |
|- ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` x ) - ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) ) / ( x - B ) ) ) limCC B ) ) |
235 |
|
eldifi |
|- ( x e. ( A \ { B } ) -> x e. A ) |
236 |
|
fveq2 |
|- ( y = x -> ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) = ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) ) |
237 |
|
fveq2 |
|- ( y = x -> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) = ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) |
238 |
236 237
|
oveq12d |
|- ( y = x -> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) = ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) ) |
239 |
|
eqid |
|- ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) = ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) |
240 |
|
ovex |
|- ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) e. _V |
241 |
238 239 240
|
fvmpt |
|- ( x e. A -> ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` x ) = ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) ) |
242 |
|
fveq2 |
|- ( y = B -> ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) = ( ( ( S Dn F ) ` ( N - 1 ) ) ` B ) ) |
243 |
|
fveq2 |
|- ( y = B -> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) = ( ( ( CC Dn T ) ` ( N - 1 ) ) ` B ) ) |
244 |
242 243
|
oveq12d |
|- ( y = B -> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) = ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` B ) ) ) |
245 |
|
ovex |
|- ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` B ) ) e. _V |
246 |
244 239 245
|
fvmpt |
|- ( B e. A -> ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) = ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` B ) ) ) |
247 |
6 246
|
syl |
|- ( ph -> ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) = ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` B ) ) ) |
248 |
1 2 3 108 80 7
|
dvntaylp0 |
|- ( ph -> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` B ) = ( ( ( S Dn F ) ` ( N - 1 ) ) ` B ) ) |
249 |
248
|
oveq2d |
|- ( ph -> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` B ) ) = ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` B ) - ( ( ( S Dn F ) ` ( N - 1 ) ) ` B ) ) ) |
250 |
114 6
|
ffvelrnd |
|- ( ph -> ( ( ( S Dn F ) ` ( N - 1 ) ) ` B ) e. CC ) |
251 |
250
|
subidd |
|- ( ph -> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` B ) - ( ( ( S Dn F ) ` ( N - 1 ) ) ` B ) ) = 0 ) |
252 |
247 249 251
|
3eqtrd |
|- ( ph -> ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) = 0 ) |
253 |
241 252
|
oveqan12rd |
|- ( ( ph /\ x e. A ) -> ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` x ) - ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) ) = ( ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) - 0 ) ) |
254 |
114
|
ffvelrnda |
|- ( ( ph /\ x e. A ) -> ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) e. CC ) |
255 |
132
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. CC ) |
256 |
157
|
ffvelrnda |
|- ( ( ph /\ x e. CC ) -> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) e. CC ) |
257 |
255 256
|
syldan |
|- ( ( ph /\ x e. A ) -> ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) e. CC ) |
258 |
254 257
|
subcld |
|- ( ( ph /\ x e. A ) -> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) e. CC ) |
259 |
258
|
subid1d |
|- ( ( ph /\ x e. A ) -> ( ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) - 0 ) = ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) ) |
260 |
253 259
|
eqtr2d |
|- ( ( ph /\ x e. A ) -> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) = ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` x ) - ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) ) ) |
261 |
235 260
|
sylan2 |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) = ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` x ) - ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) ) ) |
262 |
132
|
ssdifssd |
|- ( ph -> ( A \ { B } ) C_ CC ) |
263 |
262
|
sselda |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> x e. CC ) |
264 |
132 6
|
sseldd |
|- ( ph -> B e. CC ) |
265 |
264
|
adantr |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> B e. CC ) |
266 |
263 265
|
subcld |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( x - B ) e. CC ) |
267 |
266
|
exp1d |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( x - B ) ^ 1 ) = ( x - B ) ) |
268 |
261 267
|
oveq12d |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) / ( ( x - B ) ^ 1 ) ) = ( ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` x ) - ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) ) / ( x - B ) ) ) |
269 |
268
|
mpteq2dva |
|- ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) / ( ( x - B ) ^ 1 ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` x ) - ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) ) / ( x - B ) ) ) ) |
270 |
269
|
oveq1d |
|- ( ph -> ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) / ( ( x - B ) ^ 1 ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` x ) - ( ( y e. A |-> ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` y ) ) ) ` B ) ) / ( x - B ) ) ) limCC B ) ) |
271 |
234 270
|
eleqtrrd |
|- ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) / ( ( x - B ) ^ 1 ) ) ) limCC B ) ) |
272 |
271
|
a1i |
|- ( N e. ( ZZ>= ` 1 ) -> ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - 1 ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - 1 ) ) ` x ) ) / ( ( x - B ) ^ 1 ) ) ) limCC B ) ) ) |
273 |
9
|
expr |
|- ( ( ph /\ n e. ( 1 ..^ N ) ) -> ( 0 e. ( ( y e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` y ) ) / ( ( y - B ) ^ n ) ) ) limCC B ) -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - ( n + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( n + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( n + 1 ) ) ) ) limCC B ) ) ) |
274 |
273
|
expcom |
|- ( n e. ( 1 ..^ N ) -> ( ph -> ( 0 e. ( ( y e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` y ) ) / ( ( y - B ) ^ n ) ) ) limCC B ) -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - ( n + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( n + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( n + 1 ) ) ) ) limCC B ) ) ) ) |
275 |
274
|
a2d |
|- ( n e. ( 1 ..^ N ) -> ( ( ph -> 0 e. ( ( y e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - n ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - n ) ) ` y ) ) / ( ( y - B ) ^ n ) ) ) limCC B ) ) -> ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - ( n + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( n + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( n + 1 ) ) ) ) limCC B ) ) ) ) |
276 |
23 43 55 67 272 275
|
fzind2 |
|- ( N e. ( 1 ... N ) -> ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) / ( ( x - B ) ^ N ) ) ) limCC B ) ) ) |
277 |
11 276
|
mpcom |
|- ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) / ( ( x - B ) ^ N ) ) ) limCC B ) ) |
278 |
119
|
subidd |
|- ( ph -> ( N - N ) = 0 ) |
279 |
278
|
fveq2d |
|- ( ph -> ( ( S Dn F ) ` ( N - N ) ) = ( ( S Dn F ) ` 0 ) ) |
280 |
|
dvn0 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) |
281 |
124 86 280
|
syl2anc |
|- ( ph -> ( ( S Dn F ) ` 0 ) = F ) |
282 |
279 281
|
eqtrd |
|- ( ph -> ( ( S Dn F ) ` ( N - N ) ) = F ) |
283 |
282
|
fveq1d |
|- ( ph -> ( ( ( S Dn F ) ` ( N - N ) ) ` x ) = ( F ` x ) ) |
284 |
278
|
fveq2d |
|- ( ph -> ( ( CC Dn T ) ` ( N - N ) ) = ( ( CC Dn T ) ` 0 ) ) |
285 |
|
dvn0 |
|- ( ( CC C_ CC /\ T e. ( CC ^pm CC ) ) -> ( ( CC Dn T ) ` 0 ) = T ) |
286 |
193 199 285
|
sylancr |
|- ( ph -> ( ( CC Dn T ) ` 0 ) = T ) |
287 |
284 286
|
eqtrd |
|- ( ph -> ( ( CC Dn T ) ` ( N - N ) ) = T ) |
288 |
287
|
fveq1d |
|- ( ph -> ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) = ( T ` x ) ) |
289 |
283 288
|
oveq12d |
|- ( ph -> ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) = ( ( F ` x ) - ( T ` x ) ) ) |
290 |
289
|
oveq1d |
|- ( ph -> ( ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) / ( ( x - B ) ^ N ) ) = ( ( ( F ` x ) - ( T ` x ) ) / ( ( x - B ) ^ N ) ) ) |
291 |
290
|
mpteq2dv |
|- ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) / ( ( x - B ) ^ N ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( F ` x ) - ( T ` x ) ) / ( ( x - B ) ^ N ) ) ) ) |
292 |
291 8
|
eqtr4di |
|- ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) / ( ( x - B ) ^ N ) ) ) = R ) |
293 |
292
|
oveq1d |
|- ( ph -> ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( S Dn F ) ` ( N - N ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - N ) ) ` x ) ) / ( ( x - B ) ^ N ) ) ) limCC B ) = ( R limCC B ) ) |
294 |
277 293
|
eleqtrd |
|- ( ph -> 0 e. ( R limCC B ) ) |