| Step |
Hyp |
Ref |
Expression |
| 1 |
|
taylth.f |
|- ( ph -> F : A --> RR ) |
| 2 |
|
taylth.a |
|- ( ph -> A C_ RR ) |
| 3 |
|
taylth.d |
|- ( ph -> dom ( ( RR Dn F ) ` N ) = A ) |
| 4 |
|
taylth.n |
|- ( ph -> N e. NN ) |
| 5 |
|
taylth.b |
|- ( ph -> B e. A ) |
| 6 |
|
taylth.t |
|- T = ( N ( RR Tayl F ) B ) |
| 7 |
|
taylthlem2.m |
|- ( ph -> M e. ( 1 ..^ N ) ) |
| 8 |
|
taylthlem2.i |
|- ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ) limCC B ) ) |
| 9 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
| 10 |
|
fzofzp1 |
|- ( M e. ( 1 ..^ N ) -> ( M + 1 ) e. ( 1 ... N ) ) |
| 11 |
7 10
|
syl |
|- ( ph -> ( M + 1 ) e. ( 1 ... N ) ) |
| 12 |
9 11
|
sselid |
|- ( ph -> ( M + 1 ) e. ( 0 ... N ) ) |
| 13 |
|
fznn0sub2 |
|- ( ( M + 1 ) e. ( 0 ... N ) -> ( N - ( M + 1 ) ) e. ( 0 ... N ) ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( N - ( M + 1 ) ) e. ( 0 ... N ) ) |
| 15 |
|
elfznn0 |
|- ( ( N - ( M + 1 ) ) e. ( 0 ... N ) -> ( N - ( M + 1 ) ) e. NN0 ) |
| 16 |
14 15
|
syl |
|- ( ph -> ( N - ( M + 1 ) ) e. NN0 ) |
| 17 |
|
dvnfre |
|- ( ( F : A --> RR /\ A C_ RR /\ ( N - ( M + 1 ) ) e. NN0 ) -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) --> RR ) |
| 18 |
1 2 16 17
|
syl3anc |
|- ( ph -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) --> RR ) |
| 19 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 20 |
19
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 21 |
|
cnex |
|- CC e. _V |
| 22 |
21
|
a1i |
|- ( ph -> CC e. _V ) |
| 23 |
|
reex |
|- RR e. _V |
| 24 |
23
|
a1i |
|- ( ph -> RR e. _V ) |
| 25 |
|
ax-resscn |
|- RR C_ CC |
| 26 |
|
fss |
|- ( ( F : A --> RR /\ RR C_ CC ) -> F : A --> CC ) |
| 27 |
1 25 26
|
sylancl |
|- ( ph -> F : A --> CC ) |
| 28 |
|
elpm2r |
|- ( ( ( CC e. _V /\ RR e. _V ) /\ ( F : A --> CC /\ A C_ RR ) ) -> F e. ( CC ^pm RR ) ) |
| 29 |
22 24 27 2 28
|
syl22anc |
|- ( ph -> F e. ( CC ^pm RR ) ) |
| 30 |
|
dvnbss |
|- ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ ( N - ( M + 1 ) ) e. NN0 ) -> dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) C_ dom F ) |
| 31 |
20 29 16 30
|
syl3anc |
|- ( ph -> dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) C_ dom F ) |
| 32 |
1 31
|
fssdmd |
|- ( ph -> dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) C_ A ) |
| 33 |
|
dvn2bss |
|- ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ ( N - ( M + 1 ) ) e. ( 0 ... N ) ) -> dom ( ( RR Dn F ) ` N ) C_ dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) |
| 34 |
20 29 14 33
|
syl3anc |
|- ( ph -> dom ( ( RR Dn F ) ` N ) C_ dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) |
| 35 |
3 34
|
eqsstrrd |
|- ( ph -> A C_ dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) |
| 36 |
32 35
|
eqssd |
|- ( ph -> dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) = A ) |
| 37 |
36
|
feq2d |
|- ( ph -> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) --> RR <-> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : A --> RR ) ) |
| 38 |
18 37
|
mpbid |
|- ( ph -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : A --> RR ) |
| 39 |
38
|
ffvelcdmda |
|- ( ( ph /\ y e. A ) -> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) e. RR ) |
| 40 |
2
|
sselda |
|- ( ( ph /\ y e. A ) -> y e. RR ) |
| 41 |
|
fvres |
|- ( y e. RR -> ( ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) |` RR ) ` y ) = ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) |
| 42 |
41
|
adantl |
|- ( ( ph /\ y e. RR ) -> ( ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) |` RR ) ` y ) = ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) |
| 43 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
| 44 |
43
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
| 45 |
44
|
a1i |
|- ( ph -> RR e. ( SubRing ` CCfld ) ) |
| 46 |
4
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 47 |
5 3
|
eleqtrrd |
|- ( ph -> B e. dom ( ( RR Dn F ) ` N ) ) |
| 48 |
2 5
|
sseldd |
|- ( ph -> B e. RR ) |
| 49 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
| 50 |
|
dvnfre |
|- ( ( F : A --> RR /\ A C_ RR /\ k e. NN0 ) -> ( ( RR Dn F ) ` k ) : dom ( ( RR Dn F ) ` k ) --> RR ) |
| 51 |
1 2 49 50
|
syl2an3an |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( RR Dn F ) ` k ) : dom ( ( RR Dn F ) ` k ) --> RR ) |
| 52 |
|
simpr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. ( 0 ... N ) ) |
| 53 |
|
dvn2bss |
|- ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ k e. ( 0 ... N ) ) -> dom ( ( RR Dn F ) ` N ) C_ dom ( ( RR Dn F ) ` k ) ) |
| 54 |
19 29 52 53
|
mp3an2ani |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> dom ( ( RR Dn F ) ` N ) C_ dom ( ( RR Dn F ) ` k ) ) |
| 55 |
47
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( RR Dn F ) ` N ) ) |
| 56 |
54 55
|
sseldd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( RR Dn F ) ` k ) ) |
| 57 |
51 56
|
ffvelcdmd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( RR Dn F ) ` k ) ` B ) e. RR ) |
| 58 |
49
|
adantl |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
| 59 |
58
|
faccld |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. NN ) |
| 60 |
57 59
|
nndivred |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( ( RR Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. RR ) |
| 61 |
20 27 2 46 47 6 45 48 60
|
taylply2 |
|- ( ph -> ( T e. ( Poly ` RR ) /\ ( deg ` T ) <_ N ) ) |
| 62 |
61
|
simpld |
|- ( ph -> T e. ( Poly ` RR ) ) |
| 63 |
|
dvnply2 |
|- ( ( RR e. ( SubRing ` CCfld ) /\ T e. ( Poly ` RR ) /\ ( N - ( M + 1 ) ) e. NN0 ) -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( Poly ` RR ) ) |
| 64 |
45 62 16 63
|
syl3anc |
|- ( ph -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( Poly ` RR ) ) |
| 65 |
|
plyreres |
|- ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( Poly ` RR ) -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) |` RR ) : RR --> RR ) |
| 66 |
64 65
|
syl |
|- ( ph -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) |` RR ) : RR --> RR ) |
| 67 |
66
|
ffvelcdmda |
|- ( ( ph /\ y e. RR ) -> ( ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) |` RR ) ` y ) e. RR ) |
| 68 |
42 67
|
eqeltrrd |
|- ( ( ph /\ y e. RR ) -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) e. RR ) |
| 69 |
40 68
|
syldan |
|- ( ( ph /\ y e. A ) -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) e. RR ) |
| 70 |
39 69
|
resubcld |
|- ( ( ph /\ y e. A ) -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) e. RR ) |
| 71 |
70
|
fmpttd |
|- ( ph -> ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) : A --> RR ) |
| 72 |
48
|
adantr |
|- ( ( ph /\ y e. A ) -> B e. RR ) |
| 73 |
40 72
|
resubcld |
|- ( ( ph /\ y e. A ) -> ( y - B ) e. RR ) |
| 74 |
|
elfzouz |
|- ( M e. ( 1 ..^ N ) -> M e. ( ZZ>= ` 1 ) ) |
| 75 |
7 74
|
syl |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 76 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 77 |
75 76
|
eleqtrrdi |
|- ( ph -> M e. NN ) |
| 78 |
77
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 79 |
78
|
adantr |
|- ( ( ph /\ y e. A ) -> M e. NN0 ) |
| 80 |
|
1nn0 |
|- 1 e. NN0 |
| 81 |
80
|
a1i |
|- ( ( ph /\ y e. A ) -> 1 e. NN0 ) |
| 82 |
79 81
|
nn0addcld |
|- ( ( ph /\ y e. A ) -> ( M + 1 ) e. NN0 ) |
| 83 |
73 82
|
reexpcld |
|- ( ( ph /\ y e. A ) -> ( ( y - B ) ^ ( M + 1 ) ) e. RR ) |
| 84 |
83
|
fmpttd |
|- ( ph -> ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) : A --> RR ) |
| 85 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 86 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 87 |
86
|
ntrss2 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ A C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) C_ A ) |
| 88 |
85 2 87
|
sylancr |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) C_ A ) |
| 89 |
4
|
nncnd |
|- ( ph -> N e. CC ) |
| 90 |
77
|
nncnd |
|- ( ph -> M e. CC ) |
| 91 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 92 |
89 90 91
|
nppcan2d |
|- ( ph -> ( ( N - ( M + 1 ) ) + 1 ) = ( N - M ) ) |
| 93 |
92
|
fveq2d |
|- ( ph -> ( ( RR Dn F ) ` ( ( N - ( M + 1 ) ) + 1 ) ) = ( ( RR Dn F ) ` ( N - M ) ) ) |
| 94 |
25
|
a1i |
|- ( ph -> RR C_ CC ) |
| 95 |
|
dvnp1 |
|- ( ( RR C_ CC /\ F e. ( CC ^pm RR ) /\ ( N - ( M + 1 ) ) e. NN0 ) -> ( ( RR Dn F ) ` ( ( N - ( M + 1 ) ) + 1 ) ) = ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) ) |
| 96 |
94 29 16 95
|
syl3anc |
|- ( ph -> ( ( RR Dn F ) ` ( ( N - ( M + 1 ) ) + 1 ) ) = ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) ) |
| 97 |
93 96
|
eqtr3d |
|- ( ph -> ( ( RR Dn F ) ` ( N - M ) ) = ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) ) |
| 98 |
97
|
dmeqd |
|- ( ph -> dom ( ( RR Dn F ) ` ( N - M ) ) = dom ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) ) |
| 99 |
|
fzonnsub |
|- ( M e. ( 1 ..^ N ) -> ( N - M ) e. NN ) |
| 100 |
7 99
|
syl |
|- ( ph -> ( N - M ) e. NN ) |
| 101 |
100
|
nnnn0d |
|- ( ph -> ( N - M ) e. NN0 ) |
| 102 |
|
dvnbss |
|- ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ ( N - M ) e. NN0 ) -> dom ( ( RR Dn F ) ` ( N - M ) ) C_ dom F ) |
| 103 |
20 29 101 102
|
syl3anc |
|- ( ph -> dom ( ( RR Dn F ) ` ( N - M ) ) C_ dom F ) |
| 104 |
1 103
|
fssdmd |
|- ( ph -> dom ( ( RR Dn F ) ` ( N - M ) ) C_ A ) |
| 105 |
|
elfzofz |
|- ( M e. ( 1 ..^ N ) -> M e. ( 1 ... N ) ) |
| 106 |
7 105
|
syl |
|- ( ph -> M e. ( 1 ... N ) ) |
| 107 |
9 106
|
sselid |
|- ( ph -> M e. ( 0 ... N ) ) |
| 108 |
|
fznn0sub2 |
|- ( M e. ( 0 ... N ) -> ( N - M ) e. ( 0 ... N ) ) |
| 109 |
107 108
|
syl |
|- ( ph -> ( N - M ) e. ( 0 ... N ) ) |
| 110 |
|
dvn2bss |
|- ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ ( N - M ) e. ( 0 ... N ) ) -> dom ( ( RR Dn F ) ` N ) C_ dom ( ( RR Dn F ) ` ( N - M ) ) ) |
| 111 |
20 29 109 110
|
syl3anc |
|- ( ph -> dom ( ( RR Dn F ) ` N ) C_ dom ( ( RR Dn F ) ` ( N - M ) ) ) |
| 112 |
3 111
|
eqsstrrd |
|- ( ph -> A C_ dom ( ( RR Dn F ) ` ( N - M ) ) ) |
| 113 |
104 112
|
eqssd |
|- ( ph -> dom ( ( RR Dn F ) ` ( N - M ) ) = A ) |
| 114 |
98 113
|
eqtr3d |
|- ( ph -> dom ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) = A ) |
| 115 |
|
fss |
|- ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : A --> RR /\ RR C_ CC ) -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : A --> CC ) |
| 116 |
38 25 115
|
sylancl |
|- ( ph -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : A --> CC ) |
| 117 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 118 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 119 |
94 116 2 117 118
|
dvbssntr |
|- ( ph -> dom ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` A ) ) |
| 120 |
114 119
|
eqsstrrd |
|- ( ph -> A C_ ( ( int ` ( topGen ` ran (,) ) ) ` A ) ) |
| 121 |
88 120
|
eqssd |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) = A ) |
| 122 |
86
|
isopn3 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ A C_ RR ) -> ( A e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` A ) = A ) ) |
| 123 |
85 2 122
|
sylancr |
|- ( ph -> ( A e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` A ) = A ) ) |
| 124 |
121 123
|
mpbird |
|- ( ph -> A e. ( topGen ` ran (,) ) ) |
| 125 |
|
eqid |
|- ( A \ { B } ) = ( A \ { B } ) |
| 126 |
|
difss |
|- ( A \ { B } ) C_ A |
| 127 |
39
|
recnd |
|- ( ( ph /\ y e. A ) -> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) e. CC ) |
| 128 |
|
dvnf |
|- ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ ( N - M ) e. NN0 ) -> ( ( RR Dn F ) ` ( N - M ) ) : dom ( ( RR Dn F ) ` ( N - M ) ) --> CC ) |
| 129 |
20 29 101 128
|
syl3anc |
|- ( ph -> ( ( RR Dn F ) ` ( N - M ) ) : dom ( ( RR Dn F ) ` ( N - M ) ) --> CC ) |
| 130 |
113
|
feq2d |
|- ( ph -> ( ( ( RR Dn F ) ` ( N - M ) ) : dom ( ( RR Dn F ) ` ( N - M ) ) --> CC <-> ( ( RR Dn F ) ` ( N - M ) ) : A --> CC ) ) |
| 131 |
129 130
|
mpbid |
|- ( ph -> ( ( RR Dn F ) ` ( N - M ) ) : A --> CC ) |
| 132 |
131
|
ffvelcdmda |
|- ( ( ph /\ y e. A ) -> ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) e. CC ) |
| 133 |
|
dvnfre |
|- ( ( F : A --> RR /\ A C_ RR /\ ( N - M ) e. NN0 ) -> ( ( RR Dn F ) ` ( N - M ) ) : dom ( ( RR Dn F ) ` ( N - M ) ) --> RR ) |
| 134 |
1 2 101 133
|
syl3anc |
|- ( ph -> ( ( RR Dn F ) ` ( N - M ) ) : dom ( ( RR Dn F ) ` ( N - M ) ) --> RR ) |
| 135 |
113
|
feq2d |
|- ( ph -> ( ( ( RR Dn F ) ` ( N - M ) ) : dom ( ( RR Dn F ) ` ( N - M ) ) --> RR <-> ( ( RR Dn F ) ` ( N - M ) ) : A --> RR ) ) |
| 136 |
134 135
|
mpbid |
|- ( ph -> ( ( RR Dn F ) ` ( N - M ) ) : A --> RR ) |
| 137 |
136
|
feqmptd |
|- ( ph -> ( ( RR Dn F ) ` ( N - M ) ) = ( y e. A |-> ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) ) ) |
| 138 |
38
|
feqmptd |
|- ( ph -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) = ( y e. A |-> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) |
| 139 |
138
|
oveq2d |
|- ( ph -> ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) = ( RR _D ( y e. A |-> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) |
| 140 |
97 137 139
|
3eqtr3rd |
|- ( ph -> ( RR _D ( y e. A |-> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) = ( y e. A |-> ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) ) ) |
| 141 |
69
|
recnd |
|- ( ( ph /\ y e. A ) -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) e. CC ) |
| 142 |
|
fvexd |
|- ( ( ph /\ y e. A ) -> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) e. _V ) |
| 143 |
68
|
recnd |
|- ( ( ph /\ y e. RR ) -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) e. CC ) |
| 144 |
|
recn |
|- ( y e. RR -> y e. CC ) |
| 145 |
|
dvnply2 |
|- ( ( RR e. ( SubRing ` CCfld ) /\ T e. ( Poly ` RR ) /\ ( N - M ) e. NN0 ) -> ( ( CC Dn T ) ` ( N - M ) ) e. ( Poly ` RR ) ) |
| 146 |
45 62 101 145
|
syl3anc |
|- ( ph -> ( ( CC Dn T ) ` ( N - M ) ) e. ( Poly ` RR ) ) |
| 147 |
|
plyf |
|- ( ( ( CC Dn T ) ` ( N - M ) ) e. ( Poly ` RR ) -> ( ( CC Dn T ) ` ( N - M ) ) : CC --> CC ) |
| 148 |
146 147
|
syl |
|- ( ph -> ( ( CC Dn T ) ` ( N - M ) ) : CC --> CC ) |
| 149 |
148
|
ffvelcdmda |
|- ( ( ph /\ y e. CC ) -> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) e. CC ) |
| 150 |
144 149
|
sylan2 |
|- ( ( ph /\ y e. RR ) -> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) e. CC ) |
| 151 |
118
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 152 |
|
toponmax |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
| 153 |
151 152
|
mp1i |
|- ( ph -> CC e. ( TopOpen ` CCfld ) ) |
| 154 |
|
dfss2 |
|- ( RR C_ CC <-> ( RR i^i CC ) = RR ) |
| 155 |
94 154
|
sylib |
|- ( ph -> ( RR i^i CC ) = RR ) |
| 156 |
|
plyf |
|- ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( Poly ` RR ) -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) : CC --> CC ) |
| 157 |
64 156
|
syl |
|- ( ph -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) : CC --> CC ) |
| 158 |
157
|
ffvelcdmda |
|- ( ( ph /\ y e. CC ) -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) e. CC ) |
| 159 |
92
|
fveq2d |
|- ( ph -> ( ( CC Dn T ) ` ( ( N - ( M + 1 ) ) + 1 ) ) = ( ( CC Dn T ) ` ( N - M ) ) ) |
| 160 |
|
ssid |
|- CC C_ CC |
| 161 |
160
|
a1i |
|- ( ph -> CC C_ CC ) |
| 162 |
|
mapsspm |
|- ( CC ^m CC ) C_ ( CC ^pm CC ) |
| 163 |
|
plyf |
|- ( T e. ( Poly ` RR ) -> T : CC --> CC ) |
| 164 |
62 163
|
syl |
|- ( ph -> T : CC --> CC ) |
| 165 |
21 21
|
elmap |
|- ( T e. ( CC ^m CC ) <-> T : CC --> CC ) |
| 166 |
164 165
|
sylibr |
|- ( ph -> T e. ( CC ^m CC ) ) |
| 167 |
162 166
|
sselid |
|- ( ph -> T e. ( CC ^pm CC ) ) |
| 168 |
|
dvnp1 |
|- ( ( CC C_ CC /\ T e. ( CC ^pm CC ) /\ ( N - ( M + 1 ) ) e. NN0 ) -> ( ( CC Dn T ) ` ( ( N - ( M + 1 ) ) + 1 ) ) = ( CC _D ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ) ) |
| 169 |
161 167 16 168
|
syl3anc |
|- ( ph -> ( ( CC Dn T ) ` ( ( N - ( M + 1 ) ) + 1 ) ) = ( CC _D ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ) ) |
| 170 |
159 169
|
eqtr3d |
|- ( ph -> ( ( CC Dn T ) ` ( N - M ) ) = ( CC _D ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ) ) |
| 171 |
148
|
feqmptd |
|- ( ph -> ( ( CC Dn T ) ` ( N - M ) ) = ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) |
| 172 |
157
|
feqmptd |
|- ( ph -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) = ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) |
| 173 |
172
|
oveq2d |
|- ( ph -> ( CC _D ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ) = ( CC _D ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) |
| 174 |
170 171 173
|
3eqtr3rd |
|- ( ph -> ( CC _D ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) = ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) |
| 175 |
118 20 153 155 158 149 174
|
dvmptres3 |
|- ( ph -> ( RR _D ( y e. RR |-> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) = ( y e. RR |-> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) |
| 176 |
20 143 150 175 2 117 118 124
|
dvmptres |
|- ( ph -> ( RR _D ( y e. A |-> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) = ( y e. A |-> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) |
| 177 |
20 127 132 140 141 142 176
|
dvmptsub |
|- ( ph -> ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) = ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) ) |
| 178 |
177
|
dmeqd |
|- ( ph -> dom ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) = dom ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) ) |
| 179 |
|
ovex |
|- ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) e. _V |
| 180 |
|
eqid |
|- ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) = ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) |
| 181 |
179 180
|
dmmpti |
|- dom ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) = A |
| 182 |
178 181
|
eqtrdi |
|- ( ph -> dom ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) = A ) |
| 183 |
126 182
|
sseqtrrid |
|- ( ph -> ( A \ { B } ) C_ dom ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ) |
| 184 |
|
simpr |
|- ( ( ph /\ y e. CC ) -> y e. CC ) |
| 185 |
48
|
adantr |
|- ( ( ph /\ y e. CC ) -> B e. RR ) |
| 186 |
185
|
recnd |
|- ( ( ph /\ y e. CC ) -> B e. CC ) |
| 187 |
184 186
|
subcld |
|- ( ( ph /\ y e. CC ) -> ( y - B ) e. CC ) |
| 188 |
78
|
adantr |
|- ( ( ph /\ y e. CC ) -> M e. NN0 ) |
| 189 |
80
|
a1i |
|- ( ( ph /\ y e. CC ) -> 1 e. NN0 ) |
| 190 |
188 189
|
nn0addcld |
|- ( ( ph /\ y e. CC ) -> ( M + 1 ) e. NN0 ) |
| 191 |
187 190
|
expcld |
|- ( ( ph /\ y e. CC ) -> ( ( y - B ) ^ ( M + 1 ) ) e. CC ) |
| 192 |
144 191
|
sylan2 |
|- ( ( ph /\ y e. RR ) -> ( ( y - B ) ^ ( M + 1 ) ) e. CC ) |
| 193 |
90
|
adantr |
|- ( ( ph /\ y e. CC ) -> M e. CC ) |
| 194 |
|
1cnd |
|- ( ( ph /\ y e. CC ) -> 1 e. CC ) |
| 195 |
193 194
|
addcld |
|- ( ( ph /\ y e. CC ) -> ( M + 1 ) e. CC ) |
| 196 |
187 188
|
expcld |
|- ( ( ph /\ y e. CC ) -> ( ( y - B ) ^ M ) e. CC ) |
| 197 |
195 196
|
mulcld |
|- ( ( ph /\ y e. CC ) -> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) e. CC ) |
| 198 |
144 197
|
sylan2 |
|- ( ( ph /\ y e. RR ) -> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) e. CC ) |
| 199 |
21
|
prid2 |
|- CC e. { RR , CC } |
| 200 |
199
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
| 201 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
| 202 |
|
elfznn |
|- ( ( M + 1 ) e. ( 1 ... N ) -> ( M + 1 ) e. NN ) |
| 203 |
11 202
|
syl |
|- ( ph -> ( M + 1 ) e. NN ) |
| 204 |
203
|
nnnn0d |
|- ( ph -> ( M + 1 ) e. NN0 ) |
| 205 |
204
|
adantr |
|- ( ( ph /\ x e. CC ) -> ( M + 1 ) e. NN0 ) |
| 206 |
201 205
|
expcld |
|- ( ( ph /\ x e. CC ) -> ( x ^ ( M + 1 ) ) e. CC ) |
| 207 |
|
ovexd |
|- ( ( ph /\ x e. CC ) -> ( ( M + 1 ) x. ( x ^ M ) ) e. _V ) |
| 208 |
200
|
dvmptid |
|- ( ph -> ( CC _D ( y e. CC |-> y ) ) = ( y e. CC |-> 1 ) ) |
| 209 |
|
0cnd |
|- ( ( ph /\ y e. CC ) -> 0 e. CC ) |
| 210 |
48
|
recnd |
|- ( ph -> B e. CC ) |
| 211 |
200 210
|
dvmptc |
|- ( ph -> ( CC _D ( y e. CC |-> B ) ) = ( y e. CC |-> 0 ) ) |
| 212 |
200 184 194 208 186 209 211
|
dvmptsub |
|- ( ph -> ( CC _D ( y e. CC |-> ( y - B ) ) ) = ( y e. CC |-> ( 1 - 0 ) ) ) |
| 213 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 214 |
213
|
mpteq2i |
|- ( y e. CC |-> ( 1 - 0 ) ) = ( y e. CC |-> 1 ) |
| 215 |
212 214
|
eqtrdi |
|- ( ph -> ( CC _D ( y e. CC |-> ( y - B ) ) ) = ( y e. CC |-> 1 ) ) |
| 216 |
|
dvexp |
|- ( ( M + 1 ) e. NN -> ( CC _D ( x e. CC |-> ( x ^ ( M + 1 ) ) ) ) = ( x e. CC |-> ( ( M + 1 ) x. ( x ^ ( ( M + 1 ) - 1 ) ) ) ) ) |
| 217 |
203 216
|
syl |
|- ( ph -> ( CC _D ( x e. CC |-> ( x ^ ( M + 1 ) ) ) ) = ( x e. CC |-> ( ( M + 1 ) x. ( x ^ ( ( M + 1 ) - 1 ) ) ) ) ) |
| 218 |
90 91
|
pncand |
|- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
| 219 |
218
|
oveq2d |
|- ( ph -> ( x ^ ( ( M + 1 ) - 1 ) ) = ( x ^ M ) ) |
| 220 |
219
|
oveq2d |
|- ( ph -> ( ( M + 1 ) x. ( x ^ ( ( M + 1 ) - 1 ) ) ) = ( ( M + 1 ) x. ( x ^ M ) ) ) |
| 221 |
220
|
mpteq2dv |
|- ( ph -> ( x e. CC |-> ( ( M + 1 ) x. ( x ^ ( ( M + 1 ) - 1 ) ) ) ) = ( x e. CC |-> ( ( M + 1 ) x. ( x ^ M ) ) ) ) |
| 222 |
217 221
|
eqtrd |
|- ( ph -> ( CC _D ( x e. CC |-> ( x ^ ( M + 1 ) ) ) ) = ( x e. CC |-> ( ( M + 1 ) x. ( x ^ M ) ) ) ) |
| 223 |
|
oveq1 |
|- ( x = ( y - B ) -> ( x ^ ( M + 1 ) ) = ( ( y - B ) ^ ( M + 1 ) ) ) |
| 224 |
|
oveq1 |
|- ( x = ( y - B ) -> ( x ^ M ) = ( ( y - B ) ^ M ) ) |
| 225 |
224
|
oveq2d |
|- ( x = ( y - B ) -> ( ( M + 1 ) x. ( x ^ M ) ) = ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |
| 226 |
200 200 187 194 206 207 215 222 223 225
|
dvmptco |
|- ( ph -> ( CC _D ( y e. CC |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = ( y e. CC |-> ( ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) x. 1 ) ) ) |
| 227 |
197
|
mulridd |
|- ( ( ph /\ y e. CC ) -> ( ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) x. 1 ) = ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |
| 228 |
227
|
mpteq2dva |
|- ( ph -> ( y e. CC |-> ( ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) x. 1 ) ) = ( y e. CC |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) |
| 229 |
226 228
|
eqtrd |
|- ( ph -> ( CC _D ( y e. CC |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = ( y e. CC |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) |
| 230 |
118 20 153 155 191 197 229
|
dvmptres3 |
|- ( ph -> ( RR _D ( y e. RR |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = ( y e. RR |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) |
| 231 |
20 192 198 230 2 117 118 124
|
dvmptres |
|- ( ph -> ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) |
| 232 |
231
|
dmeqd |
|- ( ph -> dom ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = dom ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) |
| 233 |
|
ovex |
|- ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) e. _V |
| 234 |
|
eqid |
|- ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) = ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |
| 235 |
233 234
|
dmmpti |
|- dom ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) = A |
| 236 |
232 235
|
eqtrdi |
|- ( ph -> dom ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = A ) |
| 237 |
126 236
|
sseqtrrid |
|- ( ph -> ( A \ { B } ) C_ dom ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ) |
| 238 |
20 27 2 14 47 6
|
dvntaylp0 |
|- ( ph -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` B ) = ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) ) |
| 239 |
238
|
oveq2d |
|- ( ph -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` B ) ) = ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) - ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) ) ) |
| 240 |
116 5
|
ffvelcdmd |
|- ( ph -> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) e. CC ) |
| 241 |
240
|
subidd |
|- ( ph -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) - ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) ) = 0 ) |
| 242 |
239 241
|
eqtrd |
|- ( ph -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` B ) ) = 0 ) |
| 243 |
118
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 244 |
243
|
a1i |
|- ( ph -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 245 |
|
dvcn |
|- ( ( ( RR C_ CC /\ ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : A --> CC /\ A C_ RR ) /\ dom ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) = A ) -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) e. ( A -cn-> CC ) ) |
| 246 |
94 116 2 114 245
|
syl31anc |
|- ( ph -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) e. ( A -cn-> CC ) ) |
| 247 |
138 246
|
eqeltrrd |
|- ( ph -> ( y e. A |-> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) ) e. ( A -cn-> CC ) ) |
| 248 |
|
plycn |
|- ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( Poly ` RR ) -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( CC -cn-> CC ) ) |
| 249 |
64 248
|
syl |
|- ( ph -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( CC -cn-> CC ) ) |
| 250 |
2 25
|
sstrdi |
|- ( ph -> A C_ CC ) |
| 251 |
|
cncfmptid |
|- ( ( A C_ CC /\ CC C_ CC ) -> ( y e. A |-> y ) e. ( A -cn-> CC ) ) |
| 252 |
250 160 251
|
sylancl |
|- ( ph -> ( y e. A |-> y ) e. ( A -cn-> CC ) ) |
| 253 |
249 252
|
cncfmpt1f |
|- ( ph -> ( y e. A |-> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) e. ( A -cn-> CC ) ) |
| 254 |
118 244 247 253
|
cncfmpt2f |
|- ( ph -> ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) e. ( A -cn-> CC ) ) |
| 255 |
|
fveq2 |
|- ( y = B -> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) = ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) ) |
| 256 |
|
fveq2 |
|- ( y = B -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) = ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` B ) ) |
| 257 |
255 256
|
oveq12d |
|- ( y = B -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) = ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` B ) ) ) |
| 258 |
254 5 257
|
cnmptlimc |
|- ( ph -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` B ) ) e. ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) limCC B ) ) |
| 259 |
242 258
|
eqeltrrd |
|- ( ph -> 0 e. ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) limCC B ) ) |
| 260 |
210
|
subidd |
|- ( ph -> ( B - B ) = 0 ) |
| 261 |
260
|
oveq1d |
|- ( ph -> ( ( B - B ) ^ ( M + 1 ) ) = ( 0 ^ ( M + 1 ) ) ) |
| 262 |
203
|
0expd |
|- ( ph -> ( 0 ^ ( M + 1 ) ) = 0 ) |
| 263 |
261 262
|
eqtrd |
|- ( ph -> ( ( B - B ) ^ ( M + 1 ) ) = 0 ) |
| 264 |
250
|
sselda |
|- ( ( ph /\ y e. A ) -> y e. CC ) |
| 265 |
264 191
|
syldan |
|- ( ( ph /\ y e. A ) -> ( ( y - B ) ^ ( M + 1 ) ) e. CC ) |
| 266 |
265
|
fmpttd |
|- ( ph -> ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) : A --> CC ) |
| 267 |
|
dvcn |
|- ( ( ( RR C_ CC /\ ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) : A --> CC /\ A C_ RR ) /\ dom ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = A ) -> ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) e. ( A -cn-> CC ) ) |
| 268 |
94 266 2 236 267
|
syl31anc |
|- ( ph -> ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) e. ( A -cn-> CC ) ) |
| 269 |
|
oveq1 |
|- ( y = B -> ( y - B ) = ( B - B ) ) |
| 270 |
269
|
oveq1d |
|- ( y = B -> ( ( y - B ) ^ ( M + 1 ) ) = ( ( B - B ) ^ ( M + 1 ) ) ) |
| 271 |
268 5 270
|
cnmptlimc |
|- ( ph -> ( ( B - B ) ^ ( M + 1 ) ) e. ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) limCC B ) ) |
| 272 |
263 271
|
eqeltrrd |
|- ( ph -> 0 e. ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) limCC B ) ) |
| 273 |
250
|
ssdifssd |
|- ( ph -> ( A \ { B } ) C_ CC ) |
| 274 |
273
|
sselda |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> y e. CC ) |
| 275 |
210
|
adantr |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> B e. CC ) |
| 276 |
274 275
|
subcld |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> ( y - B ) e. CC ) |
| 277 |
|
eldifsni |
|- ( y e. ( A \ { B } ) -> y =/= B ) |
| 278 |
277
|
adantl |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> y =/= B ) |
| 279 |
274 275 278
|
subne0d |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> ( y - B ) =/= 0 ) |
| 280 |
203
|
adantr |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> ( M + 1 ) e. NN ) |
| 281 |
280
|
nnzd |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> ( M + 1 ) e. ZZ ) |
| 282 |
276 279 281
|
expne0d |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> ( ( y - B ) ^ ( M + 1 ) ) =/= 0 ) |
| 283 |
282
|
necomd |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> 0 =/= ( ( y - B ) ^ ( M + 1 ) ) ) |
| 284 |
283
|
neneqd |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> -. 0 = ( ( y - B ) ^ ( M + 1 ) ) ) |
| 285 |
284
|
nrexdv |
|- ( ph -> -. E. y e. ( A \ { B } ) 0 = ( ( y - B ) ^ ( M + 1 ) ) ) |
| 286 |
|
df-ima |
|- ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) " ( A \ { B } ) ) = ran ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) |` ( A \ { B } ) ) |
| 287 |
286
|
eleq2i |
|- ( 0 e. ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) " ( A \ { B } ) ) <-> 0 e. ran ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) |` ( A \ { B } ) ) ) |
| 288 |
|
resmpt |
|- ( ( A \ { B } ) C_ A -> ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) |` ( A \ { B } ) ) = ( y e. ( A \ { B } ) |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) |
| 289 |
126 288
|
ax-mp |
|- ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) |` ( A \ { B } ) ) = ( y e. ( A \ { B } ) |-> ( ( y - B ) ^ ( M + 1 ) ) ) |
| 290 |
|
ovex |
|- ( ( y - B ) ^ ( M + 1 ) ) e. _V |
| 291 |
289 290
|
elrnmpti |
|- ( 0 e. ran ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) |` ( A \ { B } ) ) <-> E. y e. ( A \ { B } ) 0 = ( ( y - B ) ^ ( M + 1 ) ) ) |
| 292 |
287 291
|
bitri |
|- ( 0 e. ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) " ( A \ { B } ) ) <-> E. y e. ( A \ { B } ) 0 = ( ( y - B ) ^ ( M + 1 ) ) ) |
| 293 |
285 292
|
sylnibr |
|- ( ph -> -. 0 e. ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) " ( A \ { B } ) ) ) |
| 294 |
90
|
adantr |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> M e. CC ) |
| 295 |
|
1cnd |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> 1 e. CC ) |
| 296 |
294 295
|
addcld |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> ( M + 1 ) e. CC ) |
| 297 |
274 196
|
syldan |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> ( ( y - B ) ^ M ) e. CC ) |
| 298 |
280
|
nnne0d |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> ( M + 1 ) =/= 0 ) |
| 299 |
77
|
adantr |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> M e. NN ) |
| 300 |
299
|
nnzd |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> M e. ZZ ) |
| 301 |
276 279 300
|
expne0d |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> ( ( y - B ) ^ M ) =/= 0 ) |
| 302 |
296 297 298 301
|
mulne0d |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) =/= 0 ) |
| 303 |
302
|
necomd |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> 0 =/= ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |
| 304 |
303
|
neneqd |
|- ( ( ph /\ y e. ( A \ { B } ) ) -> -. 0 = ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |
| 305 |
304
|
nrexdv |
|- ( ph -> -. E. y e. ( A \ { B } ) 0 = ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |
| 306 |
231
|
imaeq1d |
|- ( ph -> ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) " ( A \ { B } ) ) = ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) " ( A \ { B } ) ) ) |
| 307 |
|
df-ima |
|- ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) " ( A \ { B } ) ) = ran ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |` ( A \ { B } ) ) |
| 308 |
306 307
|
eqtrdi |
|- ( ph -> ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) " ( A \ { B } ) ) = ran ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |` ( A \ { B } ) ) ) |
| 309 |
308
|
eleq2d |
|- ( ph -> ( 0 e. ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) " ( A \ { B } ) ) <-> 0 e. ran ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |` ( A \ { B } ) ) ) ) |
| 310 |
|
resmpt |
|- ( ( A \ { B } ) C_ A -> ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |` ( A \ { B } ) ) = ( y e. ( A \ { B } ) |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) |
| 311 |
126 310
|
ax-mp |
|- ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |` ( A \ { B } ) ) = ( y e. ( A \ { B } ) |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |
| 312 |
311 233
|
elrnmpti |
|- ( 0 e. ran ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |` ( A \ { B } ) ) <-> E. y e. ( A \ { B } ) 0 = ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |
| 313 |
309 312
|
bitrdi |
|- ( ph -> ( 0 e. ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) " ( A \ { B } ) ) <-> E. y e. ( A \ { B } ) 0 = ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) |
| 314 |
305 313
|
mtbird |
|- ( ph -> -. 0 e. ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) " ( A \ { B } ) ) ) |
| 315 |
|
eldifi |
|- ( x e. ( A \ { B } ) -> x e. A ) |
| 316 |
131
|
ffvelcdmda |
|- ( ( ph /\ x e. A ) -> ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) e. CC ) |
| 317 |
315 316
|
sylan2 |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) e. CC ) |
| 318 |
2
|
ssdifssd |
|- ( ph -> ( A \ { B } ) C_ RR ) |
| 319 |
318
|
sselda |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> x e. RR ) |
| 320 |
319
|
recnd |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> x e. CC ) |
| 321 |
148
|
ffvelcdmda |
|- ( ( ph /\ x e. CC ) -> ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) e. CC ) |
| 322 |
320 321
|
syldan |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) e. CC ) |
| 323 |
317 322
|
subcld |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) e. CC ) |
| 324 |
48
|
adantr |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> B e. RR ) |
| 325 |
319 324
|
resubcld |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( x - B ) e. RR ) |
| 326 |
78
|
adantr |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> M e. NN0 ) |
| 327 |
325 326
|
reexpcld |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( x - B ) ^ M ) e. RR ) |
| 328 |
327
|
recnd |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( x - B ) ^ M ) e. CC ) |
| 329 |
324
|
recnd |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> B e. CC ) |
| 330 |
320 329
|
subcld |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( x - B ) e. CC ) |
| 331 |
|
eldifsni |
|- ( x e. ( A \ { B } ) -> x =/= B ) |
| 332 |
331
|
adantl |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> x =/= B ) |
| 333 |
320 329 332
|
subne0d |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( x - B ) =/= 0 ) |
| 334 |
326
|
nn0zd |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> M e. ZZ ) |
| 335 |
330 333 334
|
expne0d |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( x - B ) ^ M ) =/= 0 ) |
| 336 |
323 328 335
|
divcld |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) e. CC ) |
| 337 |
203
|
nnrecred |
|- ( ph -> ( 1 / ( M + 1 ) ) e. RR ) |
| 338 |
337
|
recnd |
|- ( ph -> ( 1 / ( M + 1 ) ) e. CC ) |
| 339 |
338
|
adantr |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( 1 / ( M + 1 ) ) e. CC ) |
| 340 |
|
txtopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) e. ( TopOn ` ( CC X. CC ) ) ) |
| 341 |
151 151 340
|
mp2an |
|- ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) e. ( TopOn ` ( CC X. CC ) ) |
| 342 |
341
|
toponrestid |
|- ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) = ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. CC ) ) |
| 343 |
|
limcresi |
|- ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) limCC B ) C_ ( ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) |` ( A \ { B } ) ) limCC B ) |
| 344 |
|
resmpt |
|- ( ( A \ { B } ) C_ A -> ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) |` ( A \ { B } ) ) = ( x e. ( A \ { B } ) |-> ( 1 / ( M + 1 ) ) ) ) |
| 345 |
126 344
|
ax-mp |
|- ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) |` ( A \ { B } ) ) = ( x e. ( A \ { B } ) |-> ( 1 / ( M + 1 ) ) ) |
| 346 |
345
|
oveq1i |
|- ( ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) |` ( A \ { B } ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( 1 / ( M + 1 ) ) ) limCC B ) |
| 347 |
343 346
|
sseqtri |
|- ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) limCC B ) C_ ( ( x e. ( A \ { B } ) |-> ( 1 / ( M + 1 ) ) ) limCC B ) |
| 348 |
|
cncfmptc |
|- ( ( ( 1 / ( M + 1 ) ) e. RR /\ A C_ CC /\ RR C_ CC ) -> ( x e. A |-> ( 1 / ( M + 1 ) ) ) e. ( A -cn-> RR ) ) |
| 349 |
337 250 94 348
|
syl3anc |
|- ( ph -> ( x e. A |-> ( 1 / ( M + 1 ) ) ) e. ( A -cn-> RR ) ) |
| 350 |
|
eqidd |
|- ( x = B -> ( 1 / ( M + 1 ) ) = ( 1 / ( M + 1 ) ) ) |
| 351 |
349 5 350
|
cnmptlimc |
|- ( ph -> ( 1 / ( M + 1 ) ) e. ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) limCC B ) ) |
| 352 |
347 351
|
sselid |
|- ( ph -> ( 1 / ( M + 1 ) ) e. ( ( x e. ( A \ { B } ) |-> ( 1 / ( M + 1 ) ) ) limCC B ) ) |
| 353 |
118
|
mpomulcn |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 354 |
|
0cn |
|- 0 e. CC |
| 355 |
|
opelxpi |
|- ( ( 0 e. CC /\ ( 1 / ( M + 1 ) ) e. CC ) -> <. 0 , ( 1 / ( M + 1 ) ) >. e. ( CC X. CC ) ) |
| 356 |
354 338 355
|
sylancr |
|- ( ph -> <. 0 , ( 1 / ( M + 1 ) ) >. e. ( CC X. CC ) ) |
| 357 |
341
|
toponunii |
|- ( CC X. CC ) = U. ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |
| 358 |
357
|
cncnpi |
|- ( ( ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) /\ <. 0 , ( 1 / ( M + 1 ) ) >. e. ( CC X. CC ) ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. 0 , ( 1 / ( M + 1 ) ) >. ) ) |
| 359 |
353 356 358
|
sylancr |
|- ( ph -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. 0 , ( 1 / ( M + 1 ) ) >. ) ) |
| 360 |
336 339 161 161 118 342 8 352 359
|
limccnp2 |
|- ( ph -> ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) ) |
| 361 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 362 |
361 338
|
jca |
|- ( ph -> ( 0 e. CC /\ ( 1 / ( M + 1 ) ) e. CC ) ) |
| 363 |
|
ovmpot |
|- ( ( 0 e. CC /\ ( 1 / ( M + 1 ) ) e. CC ) -> ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( 0 x. ( 1 / ( M + 1 ) ) ) ) |
| 364 |
362 363
|
syl |
|- ( ph -> ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( 0 x. ( 1 / ( M + 1 ) ) ) ) |
| 365 |
|
df-mpt |
|- ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) = { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) } |
| 366 |
365
|
a1i |
|- ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) = { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) } ) |
| 367 |
|
idd |
|- ( ph -> ( x e. ( A \ { B } ) -> x e. ( A \ { B } ) ) ) |
| 368 |
367
|
adantrd |
|- ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) -> x e. ( A \ { B } ) ) ) |
| 369 |
336 339
|
jca |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) e. CC /\ ( 1 / ( M + 1 ) ) e. CC ) ) |
| 370 |
|
ovmpot |
|- ( ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) e. CC /\ ( 1 / ( M + 1 ) ) e. CC ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) |
| 371 |
369 370
|
syl |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) |
| 372 |
|
eqeq2 |
|- ( ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) <-> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) |
| 373 |
372
|
biimpd |
|- ( ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) |
| 374 |
371 373
|
syl |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) |
| 375 |
374
|
ex |
|- ( ph -> ( x e. ( A \ { B } ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) ) |
| 376 |
375
|
impd |
|- ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) |
| 377 |
368 376
|
jcad |
|- ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) -> ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) ) |
| 378 |
367
|
adantrd |
|- ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) -> x e. ( A \ { B } ) ) ) |
| 379 |
370
|
eqcomd |
|- ( ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) e. CC /\ ( 1 / ( M + 1 ) ) e. CC ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) |
| 380 |
369 379
|
syl |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) |
| 381 |
|
eqeq2 |
|- ( ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) <-> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) ) |
| 382 |
381
|
biimpd |
|- ( ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) ) |
| 383 |
380 382
|
syl |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) ) |
| 384 |
383
|
ex |
|- ( ph -> ( x e. ( A \ { B } ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) ) ) |
| 385 |
384
|
impd |
|- ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) ) |
| 386 |
378 385
|
jcad |
|- ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) -> ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) ) ) |
| 387 |
377 386
|
impbid |
|- ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) <-> ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) ) |
| 388 |
387
|
opabbidv |
|- ( ph -> { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) } = { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) } ) |
| 389 |
366 388
|
eqtrd |
|- ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) = { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) } ) |
| 390 |
|
df-mpt |
|- ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) = { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) } |
| 391 |
390
|
eqcomi |
|- { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) } = ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) |
| 392 |
391
|
a1i |
|- ( ph -> { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) } = ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) |
| 393 |
389 392
|
eqtrd |
|- ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) |
| 394 |
393
|
oveq1d |
|- ( ph -> ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) |
| 395 |
364 394
|
jca |
|- ( ph -> ( ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( 0 x. ( 1 / ( M + 1 ) ) ) /\ ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) ) |
| 396 |
|
eleq12 |
|- ( ( ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( 0 x. ( 1 / ( M + 1 ) ) ) /\ ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) -> ( ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) <-> ( 0 x. ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) ) |
| 397 |
395 396
|
syl |
|- ( ph -> ( ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) <-> ( 0 x. ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) ) |
| 398 |
397
|
biimpd |
|- ( ph -> ( ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) -> ( 0 x. ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) ) |
| 399 |
360 398
|
mpd |
|- ( ph -> ( 0 x. ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) |
| 400 |
338
|
mul02d |
|- ( ph -> ( 0 x. ( 1 / ( M + 1 ) ) ) = 0 ) |
| 401 |
177
|
fveq1d |
|- ( ph -> ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) = ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) ` x ) ) |
| 402 |
|
fveq2 |
|- ( y = x -> ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) = ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) ) |
| 403 |
|
fveq2 |
|- ( y = x -> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) = ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) |
| 404 |
402 403
|
oveq12d |
|- ( y = x -> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) = ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) ) |
| 405 |
|
ovex |
|- ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) e. _V |
| 406 |
404 180 405
|
fvmpt |
|- ( x e. A -> ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) ` x ) = ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) ) |
| 407 |
315 406
|
syl |
|- ( x e. ( A \ { B } ) -> ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) ` x ) = ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) ) |
| 408 |
401 407
|
sylan9eq |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) = ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) ) |
| 409 |
231
|
fveq1d |
|- ( ph -> ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) = ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ` x ) ) |
| 410 |
|
oveq1 |
|- ( y = x -> ( y - B ) = ( x - B ) ) |
| 411 |
410
|
oveq1d |
|- ( y = x -> ( ( y - B ) ^ M ) = ( ( x - B ) ^ M ) ) |
| 412 |
411
|
oveq2d |
|- ( y = x -> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) = ( ( M + 1 ) x. ( ( x - B ) ^ M ) ) ) |
| 413 |
|
ovex |
|- ( ( M + 1 ) x. ( ( x - B ) ^ M ) ) e. _V |
| 414 |
412 234 413
|
fvmpt |
|- ( x e. A -> ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ` x ) = ( ( M + 1 ) x. ( ( x - B ) ^ M ) ) ) |
| 415 |
315 414
|
syl |
|- ( x e. ( A \ { B } ) -> ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ` x ) = ( ( M + 1 ) x. ( ( x - B ) ^ M ) ) ) |
| 416 |
409 415
|
sylan9eq |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) = ( ( M + 1 ) x. ( ( x - B ) ^ M ) ) ) |
| 417 |
203
|
adantr |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( M + 1 ) e. NN ) |
| 418 |
417
|
nncnd |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( M + 1 ) e. CC ) |
| 419 |
418 328
|
mulcomd |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( M + 1 ) x. ( ( x - B ) ^ M ) ) = ( ( ( x - B ) ^ M ) x. ( M + 1 ) ) ) |
| 420 |
416 419
|
eqtrd |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) = ( ( ( x - B ) ^ M ) x. ( M + 1 ) ) ) |
| 421 |
408 420
|
oveq12d |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) / ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) ) = ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( ( x - B ) ^ M ) x. ( M + 1 ) ) ) ) |
| 422 |
417
|
nnne0d |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( M + 1 ) =/= 0 ) |
| 423 |
323 328 418 335 422
|
divdiv1d |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) / ( M + 1 ) ) = ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( ( x - B ) ^ M ) x. ( M + 1 ) ) ) ) |
| 424 |
336 418 422
|
divrecd |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) / ( M + 1 ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) |
| 425 |
421 423 424
|
3eqtr2rd |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) = ( ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) / ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) ) ) |
| 426 |
425
|
mpteq2dva |
|- ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) / ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) ) ) ) |
| 427 |
426
|
oveq1d |
|- ( ph -> ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) / ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) ) ) limCC B ) ) |
| 428 |
399 400 427
|
3eltr3d |
|- ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) / ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) ) ) limCC B ) ) |
| 429 |
2 71 84 124 5 125 183 237 259 272 293 314 428
|
lhop |
|- ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ` x ) / ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ` x ) ) ) limCC B ) ) |
| 430 |
315
|
adantl |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> x e. A ) |
| 431 |
|
fveq2 |
|- ( y = x -> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) = ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) ) |
| 432 |
|
fveq2 |
|- ( y = x -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) = ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) |
| 433 |
431 432
|
oveq12d |
|- ( y = x -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) = ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) ) |
| 434 |
|
eqid |
|- ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) = ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) |
| 435 |
|
ovex |
|- ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) e. _V |
| 436 |
433 434 435
|
fvmpt |
|- ( x e. A -> ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ` x ) = ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) ) |
| 437 |
430 436
|
syl |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ` x ) = ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) ) |
| 438 |
410
|
oveq1d |
|- ( y = x -> ( ( y - B ) ^ ( M + 1 ) ) = ( ( x - B ) ^ ( M + 1 ) ) ) |
| 439 |
|
eqid |
|- ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) = ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) |
| 440 |
|
ovex |
|- ( ( x - B ) ^ ( M + 1 ) ) e. _V |
| 441 |
438 439 440
|
fvmpt |
|- ( x e. A -> ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ` x ) = ( ( x - B ) ^ ( M + 1 ) ) ) |
| 442 |
430 441
|
syl |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ` x ) = ( ( x - B ) ^ ( M + 1 ) ) ) |
| 443 |
437 442
|
oveq12d |
|- ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ` x ) / ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ` x ) ) = ( ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( M + 1 ) ) ) ) |
| 444 |
443
|
mpteq2dva |
|- ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ` x ) / ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ` x ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( M + 1 ) ) ) ) ) |
| 445 |
444
|
oveq1d |
|- ( ph -> ( ( x e. ( A \ { B } ) |-> ( ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ` x ) / ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ` x ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( M + 1 ) ) ) ) limCC B ) ) |
| 446 |
429 445
|
eleqtrd |
|- ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( M + 1 ) ) ) ) limCC B ) ) |