Metamath Proof Explorer


Theorem tbwlem1

Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tbwlem1
|- ( ( ph -> ( ps -> ch ) ) -> ( ps -> ( ph -> ch ) ) )

Proof

Step Hyp Ref Expression
1 tbw-ax2
 |-  ( ps -> ( ( ps -> ch ) -> ps ) )
2 tbw-ax1
 |-  ( ( ( ps -> ch ) -> ps ) -> ( ( ps -> ch ) -> ( ( ps -> ch ) -> ch ) ) )
3 1 2 tbwsyl
 |-  ( ps -> ( ( ps -> ch ) -> ( ( ps -> ch ) -> ch ) ) )
4 tbw-ax1
 |-  ( ( ( ps -> ch ) -> ( ( ps -> ch ) -> ch ) ) -> ( ( ( ( ps -> ch ) -> ch ) -> ch ) -> ( ( ps -> ch ) -> ch ) ) )
5 tbw-ax3
 |-  ( ( ( ( ( ps -> ch ) -> ch ) -> ch ) -> ( ( ps -> ch ) -> ch ) ) -> ( ( ps -> ch ) -> ch ) )
6 4 5 tbwsyl
 |-  ( ( ( ps -> ch ) -> ( ( ps -> ch ) -> ch ) ) -> ( ( ps -> ch ) -> ch ) )
7 3 6 tbwsyl
 |-  ( ps -> ( ( ps -> ch ) -> ch ) )
8 tbw-ax1
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ( ps -> ch ) -> ch ) -> ( ph -> ch ) ) )
9 tbw-ax1
 |-  ( ( ps -> ( ( ps -> ch ) -> ch ) ) -> ( ( ( ( ps -> ch ) -> ch ) -> ( ph -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) )
10 7 8 9 mpsyl
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ps -> ( ph -> ch ) ) )