Metamath Proof Explorer


Theorem tbwsyl

Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses tbwsyl.1
|- ( ph -> ps )
tbwsyl.2
|- ( ps -> ch )
Assertion tbwsyl
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 tbwsyl.1
 |-  ( ph -> ps )
2 tbwsyl.2
 |-  ( ps -> ch )
3 tbw-ax1
 |-  ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) )
4 1 3 ax-mp
 |-  ( ( ps -> ch ) -> ( ph -> ch ) )
5 2 4 ax-mp
 |-  ( ph -> ch )