Description: The transitive closure of the empty set. (Contributed by Mario Carneiro, 4-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | tc0 | |- ( TC ` (/) ) = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid | |- (/) C_ (/) |
|
2 | tr0 | |- Tr (/) |
|
3 | 0ex | |- (/) e. _V |
|
4 | tcmin | |- ( (/) e. _V -> ( ( (/) C_ (/) /\ Tr (/) ) -> ( TC ` (/) ) C_ (/) ) ) |
|
5 | 3 4 | ax-mp | |- ( ( (/) C_ (/) /\ Tr (/) ) -> ( TC ` (/) ) C_ (/) ) |
6 | 1 2 5 | mp2an | |- ( TC ` (/) ) C_ (/) |
7 | 0ss | |- (/) C_ ( TC ` (/) ) |
|
8 | 6 7 | eqssi | |- ( TC ` (/) ) = (/) |