Step |
Hyp |
Ref |
Expression |
1 |
|
tc2.1 |
|- A e. _V |
2 |
|
tcvalg |
|- ( B e. A -> ( TC ` B ) = |^| { x | ( B C_ x /\ Tr x ) } ) |
3 |
|
ssel |
|- ( A C_ x -> ( B e. A -> B e. x ) ) |
4 |
|
trss |
|- ( Tr x -> ( B e. x -> B C_ x ) ) |
5 |
4
|
com12 |
|- ( B e. x -> ( Tr x -> B C_ x ) ) |
6 |
3 5
|
syl6com |
|- ( B e. A -> ( A C_ x -> ( Tr x -> B C_ x ) ) ) |
7 |
6
|
impd |
|- ( B e. A -> ( ( A C_ x /\ Tr x ) -> B C_ x ) ) |
8 |
|
simpr |
|- ( ( A C_ x /\ Tr x ) -> Tr x ) |
9 |
7 8
|
jca2 |
|- ( B e. A -> ( ( A C_ x /\ Tr x ) -> ( B C_ x /\ Tr x ) ) ) |
10 |
9
|
ss2abdv |
|- ( B e. A -> { x | ( A C_ x /\ Tr x ) } C_ { x | ( B C_ x /\ Tr x ) } ) |
11 |
|
intss |
|- ( { x | ( A C_ x /\ Tr x ) } C_ { x | ( B C_ x /\ Tr x ) } -> |^| { x | ( B C_ x /\ Tr x ) } C_ |^| { x | ( A C_ x /\ Tr x ) } ) |
12 |
10 11
|
syl |
|- ( B e. A -> |^| { x | ( B C_ x /\ Tr x ) } C_ |^| { x | ( A C_ x /\ Tr x ) } ) |
13 |
|
tcvalg |
|- ( A e. _V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |
14 |
1 13
|
ax-mp |
|- ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } |
15 |
12 14
|
sseqtrrdi |
|- ( B e. A -> |^| { x | ( B C_ x /\ Tr x ) } C_ ( TC ` A ) ) |
16 |
2 15
|
eqsstrd |
|- ( B e. A -> ( TC ` B ) C_ ( TC ` A ) ) |