Metamath Proof Explorer


Theorem tchnmfval

Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n
|- G = ( toCPreHil ` W )
tcphnmval.n
|- N = ( norm ` G )
tcphnmval.v
|- V = ( Base ` W )
tcphnmval.h
|- ., = ( .i ` W )
Assertion tchnmfval
|- ( W e. Grp -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) )

Proof

Step Hyp Ref Expression
1 tcphval.n
 |-  G = ( toCPreHil ` W )
2 tcphnmval.n
 |-  N = ( norm ` G )
3 tcphnmval.v
 |-  V = ( Base ` W )
4 tcphnmval.h
 |-  ., = ( .i ` W )
5 eqid
 |-  ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) )
6 fvrn0
 |-  ( sqrt ` ( x ., x ) ) e. ( ran sqrt u. { (/) } )
7 6 a1i
 |-  ( x e. V -> ( sqrt ` ( x ., x ) ) e. ( ran sqrt u. { (/) } ) )
8 5 7 fmpti
 |-  ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> ( ran sqrt u. { (/) } )
9 1 3 4 tcphval
 |-  G = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) )
10 cnex
 |-  CC e. _V
11 sqrtf
 |-  sqrt : CC --> CC
12 frn
 |-  ( sqrt : CC --> CC -> ran sqrt C_ CC )
13 11 12 ax-mp
 |-  ran sqrt C_ CC
14 10 13 ssexi
 |-  ran sqrt e. _V
15 p0ex
 |-  { (/) } e. _V
16 14 15 unex
 |-  ( ran sqrt u. { (/) } ) e. _V
17 9 3 16 tngnm
 |-  ( ( W e. Grp /\ ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> ( ran sqrt u. { (/) } ) ) -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( norm ` G ) )
18 8 17 mpan2
 |-  ( W e. Grp -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( norm ` G ) )
19 2 18 eqtr4id
 |-  ( W e. Grp -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) )