Metamath Proof Explorer


Theorem tcidm

Description: The transitive closure function is idempotent. (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Assertion tcidm
|- ( TC ` ( TC ` A ) ) = ( TC ` A )

Proof

Step Hyp Ref Expression
1 ssid
 |-  ( TC ` A ) C_ ( TC ` A )
2 tctr
 |-  Tr ( TC ` A )
3 fvex
 |-  ( TC ` A ) e. _V
4 tcmin
 |-  ( ( TC ` A ) e. _V -> ( ( ( TC ` A ) C_ ( TC ` A ) /\ Tr ( TC ` A ) ) -> ( TC ` ( TC ` A ) ) C_ ( TC ` A ) ) )
5 3 4 ax-mp
 |-  ( ( ( TC ` A ) C_ ( TC ` A ) /\ Tr ( TC ` A ) ) -> ( TC ` ( TC ` A ) ) C_ ( TC ` A ) )
6 1 2 5 mp2an
 |-  ( TC ` ( TC ` A ) ) C_ ( TC ` A )
7 tcid
 |-  ( ( TC ` A ) e. _V -> ( TC ` A ) C_ ( TC ` ( TC ` A ) ) )
8 3 7 ax-mp
 |-  ( TC ` A ) C_ ( TC ` ( TC ` A ) )
9 6 8 eqssi
 |-  ( TC ` ( TC ` A ) ) = ( TC ` A )