Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
|- ( TC ` A ) C_ ( TC ` A ) |
2 |
|
tctr |
|- Tr ( TC ` A ) |
3 |
|
fvex |
|- ( TC ` A ) e. _V |
4 |
|
tcmin |
|- ( ( TC ` A ) e. _V -> ( ( ( TC ` A ) C_ ( TC ` A ) /\ Tr ( TC ` A ) ) -> ( TC ` ( TC ` A ) ) C_ ( TC ` A ) ) ) |
5 |
3 4
|
ax-mp |
|- ( ( ( TC ` A ) C_ ( TC ` A ) /\ Tr ( TC ` A ) ) -> ( TC ` ( TC ` A ) ) C_ ( TC ` A ) ) |
6 |
1 2 5
|
mp2an |
|- ( TC ` ( TC ` A ) ) C_ ( TC ` A ) |
7 |
|
tcid |
|- ( ( TC ` A ) e. _V -> ( TC ` A ) C_ ( TC ` ( TC ` A ) ) ) |
8 |
3 7
|
ax-mp |
|- ( TC ` A ) C_ ( TC ` ( TC ` A ) ) |
9 |
6 8
|
eqssi |
|- ( TC ` ( TC ` A ) ) = ( TC ` A ) |