Step |
Hyp |
Ref |
Expression |
1 |
|
tcvalg |
|- ( A e. V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |
2 |
|
fvex |
|- ( TC ` A ) e. _V |
3 |
1 2
|
eqeltrrdi |
|- ( A e. V -> |^| { x | ( A C_ x /\ Tr x ) } e. _V ) |
4 |
|
intexab |
|- ( E. x ( A C_ x /\ Tr x ) <-> |^| { x | ( A C_ x /\ Tr x ) } e. _V ) |
5 |
3 4
|
sylibr |
|- ( A e. V -> E. x ( A C_ x /\ Tr x ) ) |
6 |
|
ssin |
|- ( ( A C_ x /\ A C_ B ) <-> A C_ ( x i^i B ) ) |
7 |
6
|
biimpi |
|- ( ( A C_ x /\ A C_ B ) -> A C_ ( x i^i B ) ) |
8 |
|
trin |
|- ( ( Tr x /\ Tr B ) -> Tr ( x i^i B ) ) |
9 |
7 8
|
anim12i |
|- ( ( ( A C_ x /\ A C_ B ) /\ ( Tr x /\ Tr B ) ) -> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) |
10 |
9
|
an4s |
|- ( ( ( A C_ x /\ Tr x ) /\ ( A C_ B /\ Tr B ) ) -> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) |
11 |
10
|
expcom |
|- ( ( A C_ B /\ Tr B ) -> ( ( A C_ x /\ Tr x ) -> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) ) |
12 |
|
vex |
|- x e. _V |
13 |
12
|
inex1 |
|- ( x i^i B ) e. _V |
14 |
|
sseq2 |
|- ( y = ( x i^i B ) -> ( A C_ y <-> A C_ ( x i^i B ) ) ) |
15 |
|
treq |
|- ( y = ( x i^i B ) -> ( Tr y <-> Tr ( x i^i B ) ) ) |
16 |
14 15
|
anbi12d |
|- ( y = ( x i^i B ) -> ( ( A C_ y /\ Tr y ) <-> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) ) |
17 |
13 16
|
elab |
|- ( ( x i^i B ) e. { y | ( A C_ y /\ Tr y ) } <-> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) |
18 |
|
intss1 |
|- ( ( x i^i B ) e. { y | ( A C_ y /\ Tr y ) } -> |^| { y | ( A C_ y /\ Tr y ) } C_ ( x i^i B ) ) |
19 |
17 18
|
sylbir |
|- ( ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ ( x i^i B ) ) |
20 |
|
inss2 |
|- ( x i^i B ) C_ B |
21 |
19 20
|
sstrdi |
|- ( ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) |
22 |
11 21
|
syl6 |
|- ( ( A C_ B /\ Tr B ) -> ( ( A C_ x /\ Tr x ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) ) |
23 |
22
|
exlimdv |
|- ( ( A C_ B /\ Tr B ) -> ( E. x ( A C_ x /\ Tr x ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) ) |
24 |
5 23
|
syl5com |
|- ( A e. V -> ( ( A C_ B /\ Tr B ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) ) |
25 |
|
tcvalg |
|- ( A e. V -> ( TC ` A ) = |^| { y | ( A C_ y /\ Tr y ) } ) |
26 |
25
|
sseq1d |
|- ( A e. V -> ( ( TC ` A ) C_ B <-> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) ) |
27 |
24 26
|
sylibrd |
|- ( A e. V -> ( ( A C_ B /\ Tr B ) -> ( TC ` A ) C_ B ) ) |