Metamath Proof Explorer


Theorem tcphbas

Description: The base set of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n
|- G = ( toCPreHil ` W )
tcphbas.v
|- V = ( Base ` W )
Assertion tcphbas
|- V = ( Base ` G )

Proof

Step Hyp Ref Expression
1 tcphval.n
 |-  G = ( toCPreHil ` W )
2 tcphbas.v
 |-  V = ( Base ` W )
3 2 tcphex
 |-  ( x e. V |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) e. _V
4 eqid
 |-  ( .i ` W ) = ( .i ` W )
5 1 2 4 tcphval
 |-  G = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) )
6 5 2 tngbas
 |-  ( ( x e. V |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) e. _V -> V = ( Base ` G ) )
7 3 6 ax-mp
 |-  V = ( Base ` G )