Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
|- G = ( toCPreHil ` W ) |
2 |
|
tcphcph.v |
|- V = ( Base ` W ) |
3 |
|
tcphcph.f |
|- F = ( Scalar ` W ) |
4 |
|
tcphcph.1 |
|- ( ph -> W e. PreHil ) |
5 |
|
tcphcph.2 |
|- ( ph -> F = ( CCfld |`s K ) ) |
6 |
|
tcphcph.h |
|- ., = ( .i ` W ) |
7 |
|
tcphcph.3 |
|- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. K ) |
8 |
|
tcphcph.4 |
|- ( ( ph /\ x e. V ) -> 0 <_ ( x ., x ) ) |
9 |
1
|
tcphphl |
|- ( W e. PreHil <-> G e. PreHil ) |
10 |
4 9
|
sylib |
|- ( ph -> G e. PreHil ) |
11 |
1 2 6
|
tcphval |
|- G = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
12 |
|
eqid |
|- ( -g ` W ) = ( -g ` W ) |
13 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
14 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
15 |
4 14
|
syl |
|- ( ph -> W e. LMod ) |
16 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
17 |
15 16
|
syl |
|- ( ph -> W e. Grp ) |
18 |
1 2 3 4 5 6
|
tcphcphlem3 |
|- ( ( ph /\ x e. V ) -> ( x ., x ) e. RR ) |
19 |
18 8
|
resqrtcld |
|- ( ( ph /\ x e. V ) -> ( sqrt ` ( x ., x ) ) e. RR ) |
20 |
19
|
fmpttd |
|- ( ph -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> RR ) |
21 |
|
oveq12 |
|- ( ( x = y /\ x = y ) -> ( x ., x ) = ( y ., y ) ) |
22 |
21
|
anidms |
|- ( x = y -> ( x ., x ) = ( y ., y ) ) |
23 |
22
|
fveq2d |
|- ( x = y -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( y ., y ) ) ) |
24 |
|
eqid |
|- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) |
25 |
|
fvex |
|- ( sqrt ` ( x ., x ) ) e. _V |
26 |
23 24 25
|
fvmpt3i |
|- ( y e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = ( sqrt ` ( y ., y ) ) ) |
27 |
26
|
adantl |
|- ( ( ph /\ y e. V ) -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = ( sqrt ` ( y ., y ) ) ) |
28 |
27
|
eqeq1d |
|- ( ( ph /\ y e. V ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = 0 <-> ( sqrt ` ( y ., y ) ) = 0 ) ) |
29 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
30 |
|
phllvec |
|- ( W e. PreHil -> W e. LVec ) |
31 |
4 30
|
syl |
|- ( ph -> W e. LVec ) |
32 |
3
|
lvecdrng |
|- ( W e. LVec -> F e. DivRing ) |
33 |
31 32
|
syl |
|- ( ph -> F e. DivRing ) |
34 |
29 5 33
|
cphsubrglem |
|- ( ph -> ( F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) = ( K i^i CC ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) |
35 |
34
|
simp2d |
|- ( ph -> ( Base ` F ) = ( K i^i CC ) ) |
36 |
|
inss2 |
|- ( K i^i CC ) C_ CC |
37 |
35 36
|
eqsstrdi |
|- ( ph -> ( Base ` F ) C_ CC ) |
38 |
37
|
adantr |
|- ( ( ph /\ y e. V ) -> ( Base ` F ) C_ CC ) |
39 |
3 6 2 29
|
ipcl |
|- ( ( W e. PreHil /\ y e. V /\ y e. V ) -> ( y ., y ) e. ( Base ` F ) ) |
40 |
39
|
3anidm23 |
|- ( ( W e. PreHil /\ y e. V ) -> ( y ., y ) e. ( Base ` F ) ) |
41 |
4 40
|
sylan |
|- ( ( ph /\ y e. V ) -> ( y ., y ) e. ( Base ` F ) ) |
42 |
38 41
|
sseldd |
|- ( ( ph /\ y e. V ) -> ( y ., y ) e. CC ) |
43 |
42
|
sqrtcld |
|- ( ( ph /\ y e. V ) -> ( sqrt ` ( y ., y ) ) e. CC ) |
44 |
|
sqeq0 |
|- ( ( sqrt ` ( y ., y ) ) e. CC -> ( ( ( sqrt ` ( y ., y ) ) ^ 2 ) = 0 <-> ( sqrt ` ( y ., y ) ) = 0 ) ) |
45 |
43 44
|
syl |
|- ( ( ph /\ y e. V ) -> ( ( ( sqrt ` ( y ., y ) ) ^ 2 ) = 0 <-> ( sqrt ` ( y ., y ) ) = 0 ) ) |
46 |
42
|
sqsqrtd |
|- ( ( ph /\ y e. V ) -> ( ( sqrt ` ( y ., y ) ) ^ 2 ) = ( y ., y ) ) |
47 |
1 2 3 4 5
|
phclm |
|- ( ph -> W e. CMod ) |
48 |
3
|
clm0 |
|- ( W e. CMod -> 0 = ( 0g ` F ) ) |
49 |
47 48
|
syl |
|- ( ph -> 0 = ( 0g ` F ) ) |
50 |
49
|
adantr |
|- ( ( ph /\ y e. V ) -> 0 = ( 0g ` F ) ) |
51 |
46 50
|
eqeq12d |
|- ( ( ph /\ y e. V ) -> ( ( ( sqrt ` ( y ., y ) ) ^ 2 ) = 0 <-> ( y ., y ) = ( 0g ` F ) ) ) |
52 |
45 51
|
bitr3d |
|- ( ( ph /\ y e. V ) -> ( ( sqrt ` ( y ., y ) ) = 0 <-> ( y ., y ) = ( 0g ` F ) ) ) |
53 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
54 |
3 6 2 53 13
|
ipeq0 |
|- ( ( W e. PreHil /\ y e. V ) -> ( ( y ., y ) = ( 0g ` F ) <-> y = ( 0g ` W ) ) ) |
55 |
4 54
|
sylan |
|- ( ( ph /\ y e. V ) -> ( ( y ., y ) = ( 0g ` F ) <-> y = ( 0g ` W ) ) ) |
56 |
28 52 55
|
3bitrd |
|- ( ( ph /\ y e. V ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = 0 <-> y = ( 0g ` W ) ) ) |
57 |
4
|
adantr |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> W e. PreHil ) |
58 |
34
|
simp1d |
|- ( ph -> F = ( CCfld |`s ( Base ` F ) ) ) |
59 |
58
|
adantr |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> F = ( CCfld |`s ( Base ` F ) ) ) |
60 |
|
3anass |
|- ( ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) <-> ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) ) |
61 |
|
simpr2 |
|- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> x e. RR ) |
62 |
61
|
recnd |
|- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> x e. CC ) |
63 |
62
|
sqrtcld |
|- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. CC ) |
64 |
7 63
|
jca |
|- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) |
65 |
64
|
ex |
|- ( ph -> ( ( x e. K /\ x e. RR /\ 0 <_ x ) -> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) ) |
66 |
35
|
eleq2d |
|- ( ph -> ( x e. ( Base ` F ) <-> x e. ( K i^i CC ) ) ) |
67 |
|
recn |
|- ( x e. RR -> x e. CC ) |
68 |
|
elin |
|- ( x e. ( K i^i CC ) <-> ( x e. K /\ x e. CC ) ) |
69 |
68
|
rbaib |
|- ( x e. CC -> ( x e. ( K i^i CC ) <-> x e. K ) ) |
70 |
67 69
|
syl |
|- ( x e. RR -> ( x e. ( K i^i CC ) <-> x e. K ) ) |
71 |
66 70
|
sylan9bb |
|- ( ( ph /\ x e. RR ) -> ( x e. ( Base ` F ) <-> x e. K ) ) |
72 |
71
|
adantrr |
|- ( ( ph /\ ( x e. RR /\ 0 <_ x ) ) -> ( x e. ( Base ` F ) <-> x e. K ) ) |
73 |
72
|
ex |
|- ( ph -> ( ( x e. RR /\ 0 <_ x ) -> ( x e. ( Base ` F ) <-> x e. K ) ) ) |
74 |
73
|
pm5.32rd |
|- ( ph -> ( ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) <-> ( x e. K /\ ( x e. RR /\ 0 <_ x ) ) ) ) |
75 |
|
3anass |
|- ( ( x e. K /\ x e. RR /\ 0 <_ x ) <-> ( x e. K /\ ( x e. RR /\ 0 <_ x ) ) ) |
76 |
74 75
|
bitr4di |
|- ( ph -> ( ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) <-> ( x e. K /\ x e. RR /\ 0 <_ x ) ) ) |
77 |
35
|
eleq2d |
|- ( ph -> ( ( sqrt ` x ) e. ( Base ` F ) <-> ( sqrt ` x ) e. ( K i^i CC ) ) ) |
78 |
|
elin |
|- ( ( sqrt ` x ) e. ( K i^i CC ) <-> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) |
79 |
77 78
|
bitrdi |
|- ( ph -> ( ( sqrt ` x ) e. ( Base ` F ) <-> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) ) |
80 |
65 76 79
|
3imtr4d |
|- ( ph -> ( ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) ) |
81 |
60 80
|
syl5bi |
|- ( ph -> ( ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) -> ( sqrt ` x ) e. ( Base ` F ) ) ) |
82 |
81
|
imp |
|- ( ( ph /\ ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) |
83 |
82
|
adantlr |
|- ( ( ( ph /\ ( y e. V /\ z e. V ) ) /\ ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) |
84 |
8
|
adantlr |
|- ( ( ( ph /\ ( y e. V /\ z e. V ) ) /\ x e. V ) -> 0 <_ ( x ., x ) ) |
85 |
|
simprl |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> y e. V ) |
86 |
|
simprr |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> z e. V ) |
87 |
1 2 3 57 59 6 83 84 29 12 85 86
|
tcphcphlem1 |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) <_ ( ( sqrt ` ( y ., y ) ) + ( sqrt ` ( z ., z ) ) ) ) |
88 |
2 12
|
grpsubcl |
|- ( ( W e. Grp /\ y e. V /\ z e. V ) -> ( y ( -g ` W ) z ) e. V ) |
89 |
88
|
3expb |
|- ( ( W e. Grp /\ ( y e. V /\ z e. V ) ) -> ( y ( -g ` W ) z ) e. V ) |
90 |
17 89
|
sylan |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y ( -g ` W ) z ) e. V ) |
91 |
|
oveq12 |
|- ( ( x = ( y ( -g ` W ) z ) /\ x = ( y ( -g ` W ) z ) ) -> ( x ., x ) = ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) |
92 |
91
|
anidms |
|- ( x = ( y ( -g ` W ) z ) -> ( x ., x ) = ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) |
93 |
92
|
fveq2d |
|- ( x = ( y ( -g ` W ) z ) -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) ) |
94 |
93 24 25
|
fvmpt3i |
|- ( ( y ( -g ` W ) z ) e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` ( y ( -g ` W ) z ) ) = ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) ) |
95 |
90 94
|
syl |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` ( y ( -g ` W ) z ) ) = ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) ) |
96 |
|
oveq12 |
|- ( ( x = z /\ x = z ) -> ( x ., x ) = ( z ., z ) ) |
97 |
96
|
anidms |
|- ( x = z -> ( x ., x ) = ( z ., z ) ) |
98 |
97
|
fveq2d |
|- ( x = z -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( z ., z ) ) ) |
99 |
98 24 25
|
fvmpt3i |
|- ( z e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) = ( sqrt ` ( z ., z ) ) ) |
100 |
26 99
|
oveqan12d |
|- ( ( y e. V /\ z e. V ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) + ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) ) = ( ( sqrt ` ( y ., y ) ) + ( sqrt ` ( z ., z ) ) ) ) |
101 |
100
|
adantl |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) + ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) ) = ( ( sqrt ` ( y ., y ) ) + ( sqrt ` ( z ., z ) ) ) ) |
102 |
87 95 101
|
3brtr4d |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` ( y ( -g ` W ) z ) ) <_ ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) + ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) ) ) |
103 |
11 2 12 13 17 20 56 102
|
tngngpd |
|- ( ph -> G e. NrmGrp ) |
104 |
|
phllmod |
|- ( G e. PreHil -> G e. LMod ) |
105 |
10 104
|
syl |
|- ( ph -> G e. LMod ) |
106 |
|
cnnrg |
|- CCfld e. NrmRing |
107 |
34
|
simp3d |
|- ( ph -> ( Base ` F ) e. ( SubRing ` CCfld ) ) |
108 |
|
eqid |
|- ( CCfld |`s ( Base ` F ) ) = ( CCfld |`s ( Base ` F ) ) |
109 |
108
|
subrgnrg |
|- ( ( CCfld e. NrmRing /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) -> ( CCfld |`s ( Base ` F ) ) e. NrmRing ) |
110 |
106 107 109
|
sylancr |
|- ( ph -> ( CCfld |`s ( Base ` F ) ) e. NrmRing ) |
111 |
58 110
|
eqeltrd |
|- ( ph -> F e. NrmRing ) |
112 |
103 105 111
|
3jca |
|- ( ph -> ( G e. NrmGrp /\ G e. LMod /\ F e. NrmRing ) ) |
113 |
4
|
adantr |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> W e. PreHil ) |
114 |
58
|
adantr |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> F = ( CCfld |`s ( Base ` F ) ) ) |
115 |
82
|
adantlr |
|- ( ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) /\ ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) |
116 |
8
|
adantlr |
|- ( ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) /\ x e. V ) -> 0 <_ ( x ., x ) ) |
117 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
118 |
|
simprl |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> y e. ( Base ` F ) ) |
119 |
|
simprr |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> z e. V ) |
120 |
1 2 3 113 114 6 115 116 29 117 118 119
|
tcphcphlem2 |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( sqrt ` ( ( y ( .s ` W ) z ) ., ( y ( .s ` W ) z ) ) ) = ( ( abs ` y ) x. ( sqrt ` ( z ., z ) ) ) ) |
121 |
2 3 117 29
|
lmodvscl |
|- ( ( W e. LMod /\ y e. ( Base ` F ) /\ z e. V ) -> ( y ( .s ` W ) z ) e. V ) |
122 |
121
|
3expb |
|- ( ( W e. LMod /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( y ( .s ` W ) z ) e. V ) |
123 |
15 122
|
sylan |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( y ( .s ` W ) z ) e. V ) |
124 |
|
eqid |
|- ( norm ` G ) = ( norm ` G ) |
125 |
1 124 2 6
|
tcphnmval |
|- ( ( W e. Grp /\ ( y ( .s ` W ) z ) e. V ) -> ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( sqrt ` ( ( y ( .s ` W ) z ) ., ( y ( .s ` W ) z ) ) ) ) |
126 |
17 123 125
|
syl2an2r |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( sqrt ` ( ( y ( .s ` W ) z ) ., ( y ( .s ` W ) z ) ) ) ) |
127 |
114
|
fveq2d |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( norm ` F ) = ( norm ` ( CCfld |`s ( Base ` F ) ) ) ) |
128 |
127
|
fveq1d |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` F ) ` y ) = ( ( norm ` ( CCfld |`s ( Base ` F ) ) ) ` y ) ) |
129 |
|
subrgsubg |
|- ( ( Base ` F ) e. ( SubRing ` CCfld ) -> ( Base ` F ) e. ( SubGrp ` CCfld ) ) |
130 |
107 129
|
syl |
|- ( ph -> ( Base ` F ) e. ( SubGrp ` CCfld ) ) |
131 |
|
cnfldnm |
|- abs = ( norm ` CCfld ) |
132 |
|
eqid |
|- ( norm ` ( CCfld |`s ( Base ` F ) ) ) = ( norm ` ( CCfld |`s ( Base ` F ) ) ) |
133 |
108 131 132
|
subgnm2 |
|- ( ( ( Base ` F ) e. ( SubGrp ` CCfld ) /\ y e. ( Base ` F ) ) -> ( ( norm ` ( CCfld |`s ( Base ` F ) ) ) ` y ) = ( abs ` y ) ) |
134 |
130 118 133
|
syl2an2r |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` ( CCfld |`s ( Base ` F ) ) ) ` y ) = ( abs ` y ) ) |
135 |
128 134
|
eqtrd |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` F ) ` y ) = ( abs ` y ) ) |
136 |
1 124 2 6
|
tcphnmval |
|- ( ( W e. Grp /\ z e. V ) -> ( ( norm ` G ) ` z ) = ( sqrt ` ( z ., z ) ) ) |
137 |
17 119 136
|
syl2an2r |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` G ) ` z ) = ( sqrt ` ( z ., z ) ) ) |
138 |
135 137
|
oveq12d |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) = ( ( abs ` y ) x. ( sqrt ` ( z ., z ) ) ) ) |
139 |
120 126 138
|
3eqtr4d |
|- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) ) |
140 |
139
|
ralrimivva |
|- ( ph -> A. y e. ( Base ` F ) A. z e. V ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) ) |
141 |
1 2
|
tcphbas |
|- V = ( Base ` G ) |
142 |
1 117
|
tcphvsca |
|- ( .s ` W ) = ( .s ` G ) |
143 |
1 3
|
tcphsca |
|- F = ( Scalar ` G ) |
144 |
|
eqid |
|- ( norm ` F ) = ( norm ` F ) |
145 |
141 124 142 143 29 144
|
isnlm |
|- ( G e. NrmMod <-> ( ( G e. NrmGrp /\ G e. LMod /\ F e. NrmRing ) /\ A. y e. ( Base ` F ) A. z e. V ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) ) ) |
146 |
112 140 145
|
sylanbrc |
|- ( ph -> G e. NrmMod ) |
147 |
10 146 58
|
3jca |
|- ( ph -> ( G e. PreHil /\ G e. NrmMod /\ F = ( CCfld |`s ( Base ` F ) ) ) ) |
148 |
|
elin |
|- ( x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) <-> ( x e. ( Base ` F ) /\ x e. ( 0 [,) +oo ) ) ) |
149 |
|
elrege0 |
|- ( x e. ( 0 [,) +oo ) <-> ( x e. RR /\ 0 <_ x ) ) |
150 |
149
|
anbi2i |
|- ( ( x e. ( Base ` F ) /\ x e. ( 0 [,) +oo ) ) <-> ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) ) |
151 |
148 150
|
bitri |
|- ( x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) <-> ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) ) |
152 |
151 80
|
syl5bi |
|- ( ph -> ( x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) ) |
153 |
152
|
ralrimiv |
|- ( ph -> A. x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ( sqrt ` x ) e. ( Base ` F ) ) |
154 |
|
sqrtf |
|- sqrt : CC --> CC |
155 |
|
ffun |
|- ( sqrt : CC --> CC -> Fun sqrt ) |
156 |
154 155
|
ax-mp |
|- Fun sqrt |
157 |
|
inss1 |
|- ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ ( Base ` F ) |
158 |
157 37
|
sstrid |
|- ( ph -> ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ CC ) |
159 |
154
|
fdmi |
|- dom sqrt = CC |
160 |
158 159
|
sseqtrrdi |
|- ( ph -> ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ dom sqrt ) |
161 |
|
funimass4 |
|- ( ( Fun sqrt /\ ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ dom sqrt ) -> ( ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) <-> A. x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ( sqrt ` x ) e. ( Base ` F ) ) ) |
162 |
156 160 161
|
sylancr |
|- ( ph -> ( ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) <-> A. x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ( sqrt ` x ) e. ( Base ` F ) ) ) |
163 |
153 162
|
mpbird |
|- ( ph -> ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) ) |
164 |
43
|
fmpttd |
|- ( ph -> ( y e. V |-> ( sqrt ` ( y ., y ) ) ) : V --> CC ) |
165 |
1 2 6
|
tcphval |
|- G = ( W toNrmGrp ( y e. V |-> ( sqrt ` ( y ., y ) ) ) ) |
166 |
|
cnex |
|- CC e. _V |
167 |
165 2 166
|
tngnm |
|- ( ( W e. Grp /\ ( y e. V |-> ( sqrt ` ( y ., y ) ) ) : V --> CC ) -> ( y e. V |-> ( sqrt ` ( y ., y ) ) ) = ( norm ` G ) ) |
168 |
17 164 167
|
syl2anc |
|- ( ph -> ( y e. V |-> ( sqrt ` ( y ., y ) ) ) = ( norm ` G ) ) |
169 |
168
|
eqcomd |
|- ( ph -> ( norm ` G ) = ( y e. V |-> ( sqrt ` ( y ., y ) ) ) ) |
170 |
1 6
|
tcphip |
|- ., = ( .i ` G ) |
171 |
141 170 124 143 29
|
iscph |
|- ( G e. CPreHil <-> ( ( G e. PreHil /\ G e. NrmMod /\ F = ( CCfld |`s ( Base ` F ) ) ) /\ ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) /\ ( norm ` G ) = ( y e. V |-> ( sqrt ` ( y ., y ) ) ) ) ) |
172 |
147 163 169 171
|
syl3anbrc |
|- ( ph -> G e. CPreHil ) |