Metamath Proof Explorer


Theorem tcphcphlem3

Description: Lemma for tcphcph : real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015)

Ref Expression
Hypotheses tcphval.n
|- G = ( toCPreHil ` W )
tcphcph.v
|- V = ( Base ` W )
tcphcph.f
|- F = ( Scalar ` W )
tcphcph.1
|- ( ph -> W e. PreHil )
tcphcph.2
|- ( ph -> F = ( CCfld |`s K ) )
tcphcph.h
|- ., = ( .i ` W )
Assertion tcphcphlem3
|- ( ( ph /\ X e. V ) -> ( X ., X ) e. RR )

Proof

Step Hyp Ref Expression
1 tcphval.n
 |-  G = ( toCPreHil ` W )
2 tcphcph.v
 |-  V = ( Base ` W )
3 tcphcph.f
 |-  F = ( Scalar ` W )
4 tcphcph.1
 |-  ( ph -> W e. PreHil )
5 tcphcph.2
 |-  ( ph -> F = ( CCfld |`s K ) )
6 tcphcph.h
 |-  ., = ( .i ` W )
7 1 2 3 4 5 phclm
 |-  ( ph -> W e. CMod )
8 7 adantr
 |-  ( ( ph /\ X e. V ) -> W e. CMod )
9 eqid
 |-  ( Base ` F ) = ( Base ` F )
10 3 9 clmsscn
 |-  ( W e. CMod -> ( Base ` F ) C_ CC )
11 8 10 syl
 |-  ( ( ph /\ X e. V ) -> ( Base ` F ) C_ CC )
12 3 6 2 9 ipcl
 |-  ( ( W e. PreHil /\ X e. V /\ X e. V ) -> ( X ., X ) e. ( Base ` F ) )
13 12 3anidm23
 |-  ( ( W e. PreHil /\ X e. V ) -> ( X ., X ) e. ( Base ` F ) )
14 4 13 sylan
 |-  ( ( ph /\ X e. V ) -> ( X ., X ) e. ( Base ` F ) )
15 11 14 sseldd
 |-  ( ( ph /\ X e. V ) -> ( X ., X ) e. CC )
16 3 clmcj
 |-  ( W e. CMod -> * = ( *r ` F ) )
17 8 16 syl
 |-  ( ( ph /\ X e. V ) -> * = ( *r ` F ) )
18 17 fveq1d
 |-  ( ( ph /\ X e. V ) -> ( * ` ( X ., X ) ) = ( ( *r ` F ) ` ( X ., X ) ) )
19 4 adantr
 |-  ( ( ph /\ X e. V ) -> W e. PreHil )
20 simpr
 |-  ( ( ph /\ X e. V ) -> X e. V )
21 eqid
 |-  ( *r ` F ) = ( *r ` F )
22 3 6 2 21 ipcj
 |-  ( ( W e. PreHil /\ X e. V /\ X e. V ) -> ( ( *r ` F ) ` ( X ., X ) ) = ( X ., X ) )
23 19 20 20 22 syl3anc
 |-  ( ( ph /\ X e. V ) -> ( ( *r ` F ) ` ( X ., X ) ) = ( X ., X ) )
24 18 23 eqtrd
 |-  ( ( ph /\ X e. V ) -> ( * ` ( X ., X ) ) = ( X ., X ) )
25 15 24 cjrebd
 |-  ( ( ph /\ X e. V ) -> ( X ., X ) e. RR )