| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n |  |-  G = ( toCPreHil ` W ) | 
						
							| 2 |  | tcphcph.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | tcphcph.f |  |-  F = ( Scalar ` W ) | 
						
							| 4 |  | tcphcph.1 |  |-  ( ph -> W e. PreHil ) | 
						
							| 5 |  | tcphcph.2 |  |-  ( ph -> F = ( CCfld |`s K ) ) | 
						
							| 6 |  | tcphcph.h |  |-  ., = ( .i ` W ) | 
						
							| 7 | 1 2 3 4 5 | phclm |  |-  ( ph -> W e. CMod ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ph /\ X e. V ) -> W e. CMod ) | 
						
							| 9 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 10 | 3 9 | clmsscn |  |-  ( W e. CMod -> ( Base ` F ) C_ CC ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( ph /\ X e. V ) -> ( Base ` F ) C_ CC ) | 
						
							| 12 | 3 6 2 9 | ipcl |  |-  ( ( W e. PreHil /\ X e. V /\ X e. V ) -> ( X ., X ) e. ( Base ` F ) ) | 
						
							| 13 | 12 | 3anidm23 |  |-  ( ( W e. PreHil /\ X e. V ) -> ( X ., X ) e. ( Base ` F ) ) | 
						
							| 14 | 4 13 | sylan |  |-  ( ( ph /\ X e. V ) -> ( X ., X ) e. ( Base ` F ) ) | 
						
							| 15 | 11 14 | sseldd |  |-  ( ( ph /\ X e. V ) -> ( X ., X ) e. CC ) | 
						
							| 16 | 3 | clmcj |  |-  ( W e. CMod -> * = ( *r ` F ) ) | 
						
							| 17 | 8 16 | syl |  |-  ( ( ph /\ X e. V ) -> * = ( *r ` F ) ) | 
						
							| 18 | 17 | fveq1d |  |-  ( ( ph /\ X e. V ) -> ( * ` ( X ., X ) ) = ( ( *r ` F ) ` ( X ., X ) ) ) | 
						
							| 19 | 4 | adantr |  |-  ( ( ph /\ X e. V ) -> W e. PreHil ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ X e. V ) -> X e. V ) | 
						
							| 21 |  | eqid |  |-  ( *r ` F ) = ( *r ` F ) | 
						
							| 22 | 3 6 2 21 | ipcj |  |-  ( ( W e. PreHil /\ X e. V /\ X e. V ) -> ( ( *r ` F ) ` ( X ., X ) ) = ( X ., X ) ) | 
						
							| 23 | 19 20 20 22 | syl3anc |  |-  ( ( ph /\ X e. V ) -> ( ( *r ` F ) ` ( X ., X ) ) = ( X ., X ) ) | 
						
							| 24 | 18 23 | eqtrd |  |-  ( ( ph /\ X e. V ) -> ( * ` ( X ., X ) ) = ( X ., X ) ) | 
						
							| 25 | 15 24 | cjrebd |  |-  ( ( ph /\ X e. V ) -> ( X ., X ) e. RR ) |