Step |
Hyp |
Ref |
Expression |
1 |
|
tcphex.v |
|- V = ( Base ` W ) |
2 |
|
eqid |
|- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) |
3 |
|
fvrn0 |
|- ( sqrt ` ( x ., x ) ) e. ( ran sqrt u. { (/) } ) |
4 |
3
|
a1i |
|- ( x e. V -> ( sqrt ` ( x ., x ) ) e. ( ran sqrt u. { (/) } ) ) |
5 |
2 4
|
fmpti |
|- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> ( ran sqrt u. { (/) } ) |
6 |
1
|
fvexi |
|- V e. _V |
7 |
|
cnex |
|- CC e. _V |
8 |
|
sqrtf |
|- sqrt : CC --> CC |
9 |
|
frn |
|- ( sqrt : CC --> CC -> ran sqrt C_ CC ) |
10 |
8 9
|
ax-mp |
|- ran sqrt C_ CC |
11 |
7 10
|
ssexi |
|- ran sqrt e. _V |
12 |
|
p0ex |
|- { (/) } e. _V |
13 |
11 12
|
unex |
|- ( ran sqrt u. { (/) } ) e. _V |
14 |
|
fex2 |
|- ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> ( ran sqrt u. { (/) } ) /\ V e. _V /\ ( ran sqrt u. { (/) } ) e. _V ) -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) e. _V ) |
15 |
5 6 13 14
|
mp3an |
|- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) e. _V |