Metamath Proof Explorer


Theorem tcphip

Description: The inner product of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n
|- G = ( toCPreHil ` W )
tcphip.s
|- .x. = ( .i ` W )
Assertion tcphip
|- .x. = ( .i ` G )

Proof

Step Hyp Ref Expression
1 tcphval.n
 |-  G = ( toCPreHil ` W )
2 tcphip.s
 |-  .x. = ( .i ` W )
3 eqid
 |-  ( Base ` W ) = ( Base ` W )
4 3 tcphex
 |-  ( x e. ( Base ` W ) |-> ( sqrt ` ( x .x. x ) ) ) e. _V
5 1 3 2 tcphval
 |-  G = ( W toNrmGrp ( x e. ( Base ` W ) |-> ( sqrt ` ( x .x. x ) ) ) )
6 5 2 tngip
 |-  ( ( x e. ( Base ` W ) |-> ( sqrt ` ( x .x. x ) ) ) e. _V -> .x. = ( .i ` G ) )
7 4 6 ax-mp
 |-  .x. = ( .i ` G )