Metamath Proof Explorer


Theorem tcphmulr

Description: The ring operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n
|- G = ( toCPreHil ` W )
tcphmulr.t
|- .x. = ( .r ` W )
Assertion tcphmulr
|- .x. = ( .r ` G )

Proof

Step Hyp Ref Expression
1 tcphval.n
 |-  G = ( toCPreHil ` W )
2 tcphmulr.t
 |-  .x. = ( .r ` W )
3 eqid
 |-  ( Base ` W ) = ( Base ` W )
4 3 tcphex
 |-  ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) e. _V
5 eqid
 |-  ( .i ` W ) = ( .i ` W )
6 1 3 5 tcphval
 |-  G = ( W toNrmGrp ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) )
7 6 2 tngmulr
 |-  ( ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) e. _V -> .x. = ( .r ` G ) )
8 4 7 ax-mp
 |-  .x. = ( .r ` G )