Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
|- G = ( toCPreHil ` W ) |
2 |
|
tcphnmval.n |
|- N = ( norm ` G ) |
3 |
|
tcphnmval.v |
|- V = ( Base ` W ) |
4 |
|
tcphnmval.h |
|- ., = ( .i ` W ) |
5 |
1 2 3 4
|
tchnmfval |
|- ( W e. Grp -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
6 |
5
|
fveq1d |
|- ( W e. Grp -> ( N ` X ) = ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` X ) ) |
7 |
|
oveq12 |
|- ( ( x = X /\ x = X ) -> ( x ., x ) = ( X ., X ) ) |
8 |
7
|
anidms |
|- ( x = X -> ( x ., x ) = ( X ., X ) ) |
9 |
8
|
fveq2d |
|- ( x = X -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( X ., X ) ) ) |
10 |
|
eqid |
|- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) |
11 |
|
fvex |
|- ( sqrt ` ( X ., X ) ) e. _V |
12 |
9 10 11
|
fvmpt |
|- ( X e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` X ) = ( sqrt ` ( X ., X ) ) ) |
13 |
6 12
|
sylan9eq |
|- ( ( W e. Grp /\ X e. V ) -> ( N ` X ) = ( sqrt ` ( X ., X ) ) ) |