| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n |  |-  G = ( toCPreHil ` W ) | 
						
							| 2 |  | eqidd |  |-  ( T. -> ( Base ` W ) = ( Base ` W ) ) | 
						
							| 3 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 4 | 1 3 | tcphbas |  |-  ( Base ` W ) = ( Base ` G ) | 
						
							| 5 | 4 | a1i |  |-  ( T. -> ( Base ` W ) = ( Base ` G ) ) | 
						
							| 6 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 7 | 1 6 | tchplusg |  |-  ( +g ` W ) = ( +g ` G ) | 
						
							| 8 | 7 | a1i |  |-  ( T. -> ( +g ` W ) = ( +g ` G ) ) | 
						
							| 9 | 8 | oveqdr |  |-  ( ( T. /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` G ) y ) ) | 
						
							| 10 |  | eqidd |  |-  ( T. -> ( Scalar ` W ) = ( Scalar ` W ) ) | 
						
							| 11 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 12 | 1 11 | tcphsca |  |-  ( Scalar ` W ) = ( Scalar ` G ) | 
						
							| 13 | 12 | a1i |  |-  ( T. -> ( Scalar ` W ) = ( Scalar ` G ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 15 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 16 | 1 15 | tcphvsca |  |-  ( .s ` W ) = ( .s ` G ) | 
						
							| 17 | 16 | a1i |  |-  ( T. -> ( .s ` W ) = ( .s ` G ) ) | 
						
							| 18 | 17 | oveqdr |  |-  ( ( T. /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> ( x ( .s ` W ) y ) = ( x ( .s ` G ) y ) ) | 
						
							| 19 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 20 | 1 19 | tcphip |  |-  ( .i ` W ) = ( .i ` G ) | 
						
							| 21 | 20 | a1i |  |-  ( T. -> ( .i ` W ) = ( .i ` G ) ) | 
						
							| 22 | 21 | oveqdr |  |-  ( ( T. /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( .i ` W ) y ) = ( x ( .i ` G ) y ) ) | 
						
							| 23 | 2 5 9 10 13 14 18 22 | phlpropd |  |-  ( T. -> ( W e. PreHil <-> G e. PreHil ) ) | 
						
							| 24 | 23 | mptru |  |-  ( W e. PreHil <-> G e. PreHil ) |