Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
|- G = ( toCPreHil ` W ) |
2 |
|
eqidd |
|- ( T. -> ( Base ` W ) = ( Base ` W ) ) |
3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
4 |
1 3
|
tcphbas |
|- ( Base ` W ) = ( Base ` G ) |
5 |
4
|
a1i |
|- ( T. -> ( Base ` W ) = ( Base ` G ) ) |
6 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
7 |
1 6
|
tchplusg |
|- ( +g ` W ) = ( +g ` G ) |
8 |
7
|
a1i |
|- ( T. -> ( +g ` W ) = ( +g ` G ) ) |
9 |
8
|
oveqdr |
|- ( ( T. /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` G ) y ) ) |
10 |
|
eqidd |
|- ( T. -> ( Scalar ` W ) = ( Scalar ` W ) ) |
11 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
12 |
1 11
|
tcphsca |
|- ( Scalar ` W ) = ( Scalar ` G ) |
13 |
12
|
a1i |
|- ( T. -> ( Scalar ` W ) = ( Scalar ` G ) ) |
14 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
15 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
16 |
1 15
|
tcphvsca |
|- ( .s ` W ) = ( .s ` G ) |
17 |
16
|
a1i |
|- ( T. -> ( .s ` W ) = ( .s ` G ) ) |
18 |
17
|
oveqdr |
|- ( ( T. /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) ) -> ( x ( .s ` W ) y ) = ( x ( .s ` G ) y ) ) |
19 |
|
eqid |
|- ( .i ` W ) = ( .i ` W ) |
20 |
1 19
|
tcphip |
|- ( .i ` W ) = ( .i ` G ) |
21 |
20
|
a1i |
|- ( T. -> ( .i ` W ) = ( .i ` G ) ) |
22 |
21
|
oveqdr |
|- ( ( T. /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( .i ` W ) y ) = ( x ( .i ` G ) y ) ) |
23 |
2 5 9 10 13 14 18 22
|
phlpropd |
|- ( T. -> ( W e. PreHil <-> G e. PreHil ) ) |
24 |
23
|
mptru |
|- ( W e. PreHil <-> G e. PreHil ) |